Synthesis of New Thiazole Derivatives Bearing Thiazolidin-4(5H)-One Structure and Evaluation of Their Antimicrobial Activity

Authors

  • Asaf Evrim Evren Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey; Vocational School of Health Services, Bilecik Şeyh Edebali University, Bilecik, Turkey https://orcid.org/0000-0002-8651-826X
  • Leyla Yurttaş Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey
  • Hülya Karaca Gencer Department of Pharmaceutical Microbiology, Faculty of Pharmacy, Anadolu University, 26470, Eskisehir, Turkey

DOI:

https://doi.org/10.1590/s2175-97902022e19248

Keywords:

Thiazole, Thiazolidin-4-one, Azoles, Antibacterial activity, Anticandidal activity

Abstract

The first report about antimicrobial resistance was published in the 1940s. And today, the antimicrobial resistance has become a worldwide problem. Because of this problem, there is a need to develop new drugs. That’s why we synthesized some novel thiazolidine-4-one derivatives and evaluated their antimicrobial activity. The final compounds were obtained by reacting 2-[(4,5-diphenylthiazol-2-yl)imino]thiazolidin-4-one with some aryl aldehydes. The synthesized compounds were investigated for their antimicrobial activity against four Candida species, five gram-negative and four gram-positive bacterial species. The lead compounds (4a- h) were obtained with a yield of at least 70%. All compounds showed antimicrobial activity. Compound 4f (MIC: 31.25 µg/ml) exhibited more efficacy than the other compounds against C. glabrata (ATCC 24433). Compound 4b (MIC: 62.5 µg/ml) was the most active compound against all bacterial species, particularly K. pneumoniae (NCTC 9633). Whereas, compound 4c (MIC: <31.25 µg/ml) was observed as the most active compound against E. coli (ATCC 25922). In general, all compounds (4a-4h) showed antimicrobial activity against all fungi and bacterial species. Compounds 4b (2,6-dichlorobenzylidene), 4c (2,6-dihydroxybenzylidene), 4f (1H-pyrrol-2- yl)methylene), 4g (4-triflouromethylbenzylidene) and 4h (2,3,4-trimethoxybenzylidene) were determined as the most active compounds.

Downloads

Download data is not yet available.

References

Abdelazeem AH, El-Saadi MT, Safi El-Din AG, Omar HA, El-Moghazy SM. Design, synthesis and analgesic/anti-inflammatory evaluation of novel diarylthiazole and diarylimidazole derivatives towards selective COX-1 inhibitors with better gastric profile. Bioorg Med Chem. 2017;25(2):665-76.

Abdelazeem AH, Salama SA, Maghrabi IA. Design, synthesis, and anti-inflammatory evaluation of novel diphenylthiazole-thiazolidinone hybrids. Arch Pharm (Weinheim). 2015;348(7):518-30.

Abraham EP, Chain E. An Enzyme from Bacteria able to Destroy Penicillin. Nature. 1940;146(3713):837.

Ansari MI, Khan SA. Synthesis and antimicrobial activity of some novel quinoline-pyrazoline-based coumarinyl thiazole derivatives. Med Chem Res. 2017;26(7):1481-96.

Baumann M, Baxendale IR, Ley SV, Nikbin N. An overview of the key routes to the best selling 5-membered ring heterocyclic pharmaceuticals. Beilstein J Org Chem. 2011;7:442-95.

Berber I, Cokmus C, Atalan E. Characterization of Staphylococcus species by SDS-PAGE of Whole-Cell and Extracellular Proteins. . Microbiology. 2003;72(1):42-7.

» http://berber2003_Article_ CharacterizationOfStaphylococc.pdf

Bhardwaj V, Gumber D, Abbot V, Dhiman S, Sharma P. Pyrrole: a resourceful small molecule in key medicinal hetero-aromatics. RSC Advances. 2015;5(20):15233-66.

Bondock S, Naser T, Ammar YA. Synthesis of some new 2-(3-pyridyl)-4,5-disubstituted thiazoles as potent antimicrobial agents. Eur J Med Chem. 2013;62:270-9.

Chhabria MT, Patel S, Modi P, Brahmkshatriya PS. Thiazole: A review on chemistry, synthesis and therapeutic importance of its derivatives. Curr Top Med Chem. 2016;16(26):2841-62.

Chimenti F, Bizzarri B, Bolasco A, Secci D, Chimenti P, Granese A, et al. Synthesis and biological evaluation of novel 2,4-disubstituted-1,3-thiazoles as anti-Candida spp. agents. Eur J Med Chem. 2011;46(1):378-82.

CLSI. Methods for dilution antimicrobial susceptibility tests for bacteria that grow aerobically; approved standard-ninth edition. CLSI document M07-A9. Wayne, Pennsylvania, USA: Clinical and Laboratory Standards Institute; 2012.

Fahmy HT. Synthesis of some new triazoles as potential antifungal agents. Boll Chim Farm. 2001;140(6):422-7.

Gürsoy A, Terzioglu N, Ötük G. Synthesis of some new hydrazide-hydrazones, thiosemicarbazides and thiazolidinones as possible antimicrobials. Eur J Med Chem. 1997;32(9):753-7.

Gzella AK, Kowiel M, Susel A, Wojtyra MN, Lesyk R. Heterocyclic tautomerism: reassignment of two crystal structures of 2-amino-1,3-thiazolidin-4-one derivatives. Acta Crystallogr C Struct Chem. 2014;70(Pt 8):812-6.

Hargrave KD, Hess FK, Oliver JT. N-(4-substituted-thiazolyl) oxamic acid derivatives, a new series of potent, orally active antiallergy agents. J Med Chem. 1983;26(8):1158-63.

Kaspady M, Narayanaswamy V, Raju M, Rao G. Synthesis, antibacterial activity of 2,4-disubstituted oxazoles and thiazoles as bioisosteres. Lett Drug Des Discov. 2009;6(1):21-8.

Khosravan R, Kukulka MJ, Wu JT, Joseph-Ridge N, Vernillet L. The effect of age and gender on pharmacokinetics, pharmacodynamics, and safety of febuxostat, a novel nonpurine selective inhibitor of xanthine oxidase. J Clin Pharmacol. 2008;48(9):1014-24.

Kulabaş N, Bingöl Özakpınar Ö, Özsavcı D, Leyssen P, Neyts J, Küçükgüzel İ. Synthesis, characterization and biological evaluation of thioureas, acylthioureas and 4-thiazolidinones as anticancer and antiviral agents. Marmara Pharm J. 2017;21(2):371-384.

Kumawat MK. Thiazole containing heterocycles with antimalarial activity. Curr Drug Discov Technol. 2018;15(3):196-200.

Lamotte J, Dive G, Ghuysen J-M. Conformational analysis of β and γ-lactam antibiotics. Eur J Med Chem. 1991;26(1):43-50.

Levy SB, Marshall B. Antibacterial resistance worldwide: causes, challenges and responses. Nat Med. 2004;10(12 Suppl):S122-9.

Lipinski CA, Lombardo F, Dominy BW, Feeney PJ. Experimental and computational approaches to estimate solubility and permeability in drug discovery and development settings. Adv Drug Deliv Rev. 1997;23(1-3):3-25.

Metwally MA, Farahat AA, Abdel-Wahab BF. 2-Amino- 4-thiazolidinones: Synthesis and reactions. J Sulfur Chem. 2010;31(4):315-49.

Mine Y, Kamimura T, Watanabe Y, Tawara S, Matsumoto Y, Shibayama F, et al. In vitro antibacterial activity of FK482, a new orally active cephalosporin. J Antibiot. 1988;41(12):1873-87.

Mitscher LA, Pillai SP, Gentry EJ, Shankel DM. Multiple drug resistance. Med Res Rev. 1999;19(6):477-96.

Momose Y, Meguro K, Ikeda H, Hatanaka C, Oi S, Sohda T. Studies on antidiabetic agents. X. Synthesis and biological activities of pioglitazone and related compounds. Chem Pharm Bull (Tokyo). 1991;39(6):1440-5.

Muñoz-Bonilla A, Fernández-García M. Polymeric materials with antimicrobial activity. Prog Polym Sci. 2012;37(2):281-339.

Patt WC, Hamilton HW, Taylor MD, Ryan MJ, Taylor DG, Connolly CJC, et al. Structure-activity relationships of a series of 2-amino-4-thiazole-containing renin inhibitors. J Med Chem. 1992;35(14):2562-72.

Pieczonka AM, Strzelczyk A, Sadowska B, Mloston G, Staczek P. Synthesis and evaluation of antimicrobial activity of hydrazones derived from 3-oxido-1H-imidazole-4-carbohydrazides. Eur J Med Chem. 2013;64:389-95.

Rawal RK, Tripathi R, Katti SB, Pannecouque C, De Clercq E. Synthesis and evaluation of 2-(2,6-dihalophenyl)-3-pyrimidinyl-1,3-thiazolidin-4-one analogues as anti-HIV-1 agents. Bioorg Med Chem. 2007;15(9):3134-42.

Rice LB. Federal funding for the study of antimicrobial resistance in nosocomial pathogens: no ESKAPE. J Infect Dis. 2008;197(8):1079-81.

Rodriguez-Tudela J, Arendrup M, Barchiesi F, Bille J, Chryssanthou E, Cuenca-Estrella M, et al. EUCAST definitive document EDef 7.1: method for the determination of broth dilution MICs of antifungal agents for fermentative yeasts. Clin Microbiol Infect. 2008;14(4):398-405.

Rossello A, Bertini S, Lapucci A, Macchia M, Martinelli A, Rapposelli S, et al. Synthesis, antifungal activity, and molecular modeling studies of new inverted oxime ethers of oxiconazole. J Med Chem. 2002;45(22):4903-12.

Rostom SA, Ashour HM, El Razik HA, El Fattah Ael F, El-Din NN. Azole antimicrobial pharmacophore-based tetrazoles: synthesis and biological evaluation as potential antimicrobial and anticonvulsant agents. Bioorg Med Chem. 2009;17(6):2410-22.

Secci D, Bizzarri B, Bolasco A, Carradori S, D’Ascenzio M, Rivanera D, et al. Synthesis, anti-Candida activity, and cytotoxicity of new (4-(4-iodophenyl)thiazol-2-yl)hydrazine derivatives. Eur J Med Chem. 2012;53:246-53.

Shi DF, Bradshaw TD, Wrigley S, McCall CJ, Lelieveld P, Fichtner I, et al. Antitumor benzothiazoles. 3. Synthesis of 2-(4-aminophenyl)benzothiazoles and evaluation of their activities against breast cancer cell lines in vitro and in vivo. J Med Chem. 1996;39(17):3375-84.

Tomasic T, Mirt M, Barancokova M, Ilas J, Zidar N, Tammela P, et al. Design, synthesis and biological evaluation of 4,5-dibromo-N-(thiazol-2-yl)-1H-pyrrole-2-carboxamide derivatives as novel DNA gyrase inhibitors. Bioorg Med Chem. 2017;25(1):338-49.

Tripathi AC, Gupta SJ, Fatima GN, Sonar PK, Verma A, Saraf SK. 4-Thiazolidinones: The advances continue. Eur J Med Chem. 2014;72:52-77.

Vicini P, Geronikaki A, Anastasia K, Incerti M, Zani F. Synthesis and antimicrobial activity of novel 2-thiazolylimino-5-arylidene-4-thiazolidinones. Bioorg Med Chem. 2006;14(11):3859-64.

Vicini P, Geronikaki A, Incerti M, Zani F, Dearden J, Hewitt M. 2-Heteroarylimino-5-benzylidene-4-thiazolidinones analogues of 2-thiazolylimino-5-benzylidene-4- thiazolidinones with antimicrobial activity: synthesis and structure-activity relationship. Bioorg Med Chem. 2008;16(7):3714-24.

Willyard C. The drug-resistant bacteria that pose the greatest health threats. Nature. 2017;543(7643):15.

Downloads

Published

2022-11-23

Issue

Section

Original Article

How to Cite

Synthesis of New Thiazole Derivatives Bearing Thiazolidin-4(5H)-One Structure and Evaluation of Their Antimicrobial Activity. (2022). Brazilian Journal of Pharmaceutical Sciences, 58. https://doi.org/10.1590/s2175-97902022e19248