The preventive effect of exogenous adenosine triphosphate on methanol-induced cardiotoxicity in rats

Authors

  • Resit Coskun Department of Cardiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey https://orcid.org/0000-0002-0312-2009
  • Aziz Inan Celik Department of Cardiology, Gebze Fatih State Hospital, Kocaeli, Turkey
  • Muharrem Said COSGUN Department of Cardiology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey
  • Renad Mammadov Department of Pharmacology, Faculty of Medicine, Erzincan Binali Yildirim University, Erzincan, Turkey

DOI:

https://doi.org/10.1590/s2175-97902023e21220

Keywords:

ATP; Cardiotoxicity; Methanol; Methotrexate; Rat

Abstract

Exposure to methanol can cause serious consequences such as permanent visual disturbances and death. The heart tissue is highly vulnerable to ATP deficiency. Our study aimed to investigate whether exogenous ATP administration may alleviate methanol-induced ATP deficiency and subsequent oxidative damage in rat heart tissue. A total of 30 rats were divided into equal five groups; Healthy Group (HG), Methotrexate (MXG), Methanol (MeOH), Methotrexate+Methanol (MXM), and Methotrexate+Methanol+ATP (MMA) groups. We inhibited tetrahydrofolate synthesis by methotrexate to induce methanol toxicity. Methotrexate was administered to MXG, MXM, and MMA group animals for seven days with a catheter directly to the stomach at a 0,3 mg/kg dose per day. At the end of this period, % 20 methanol at a dose of 3 g/kg was administered to MeOH, MMA and MXM group animals. Immediately after methanol application, MMA group animals were injected with ATP at a 4 mg/kg dose intraperitoneally. Blood samples and heart tissues were used for biochemical analysis and histopathological examination. Co-exposure to methanol and methotrexate substantially exacerbated cardiac damage, indicating the potent cardiotoxic effects of methanol. However, the administration of exogenous ATP to MMA group animals brought biochemical oxidative damage parameters and histopathological findings closer to HG.

Downloads

Download data is not yet available.

References

Abdel-Daim MM, Khalifa HA, Abushouk AI, Dkhil MA, Al-Quraishy SA. Diosmin attenuates methotrexate-ınduced hepatic, renal, and cardiac ınjury: a biochemical and histopathological study in mice. Oxid Med Cell Longev. 2017;2017:3281670.

Abushouk AI, Ismail A, Salem AMA, Afifi AM, Abdel-Daim MM. Cardioprotective mechanisms of phytochemicals against doxorubicin-induced cardiotoxicity. Biomed Pharmacother. 2017;90:935-946.

Ahiskali I, Pinar CL, Kiki M, Cankaya M, Kunak CS, Altuner D. Effect of taxifolin on methanol-induced oxidative and inflammatory optic nerve damage in rats. Cutan Ocul Toxicol. 2019;38(4):384-389.

AlBasher G, AlKahtane AA, Alarifi S, Ali D, Alessia MS, Almeer RS, et al. Methotrexate-induced apoptosis in human ovarian adenocarcinoma SKOV-3 cells via ROS-mediated bax/bcl-2-cyt-c release cascading. Onco Targets Ther. 2018;12:21-30.

Aldemir M, Simsek M, Kara A, Ozcicek F, Mammadov R, Yazıcı G, et al. The effect of adenosine triphosphate on sunitinib-induced cardiac injury in rats. Hum Exp Toxicol. 2020;39(8):1046-1053.

Balaban RS. Regulation of oxidative phosphorylation in the mammalian cell. Am J Physiol Cell Physiol. 1990;258(3):377-389.

Bergendi L, Benes L, Duracková Z, Ferencik M. Chemistry, physiology and pathology of free radicals. Life Sci. 1999;65(18-19):1865-74.

Bradley PP, Priebat DA, Christensen RD, Rothstein G. Measurement of cutaneous inflammation: Estimation of neutrophil content with an enzyme marker. J invest Dermatol. 1982;78(3):206-209.

Cordwell SJ, Edwards AV, Liddy KA, Moshkanbaryans L, Solis N, Parker BL, et al. Release of tissue-specific proteins into coronary perfusate as a model for biomarker discovery in myocardial ischemia/reperfusion injury. J Proteome Res. 2012;11(4):2114-26.

DeFelice A, Wilson W, Ambre J. Acute cardiovascular effects of intravenous methanol in the anesthetized dog. Toxicol Appl Pharmacol. 1976;38(3):631-8.

Esterbauer H, Gebicki J, Puhl H, Jürgens G. The role of lipid peroxidation and antioxidants in oxidative modification of LDL. Free Radic Biol Med. 1992;13(4):341-90.

Goodman J, Tephly T. The role of hepatic microbody and soluble oxidases in the peroxidation of methanol in the rat and monkey. Mol Pharmacol. 1968;4(5):492-501.

Green C, Gower J, Healing G, Cotterill L, Fuller B, Simpkin S. The importance of iron, calcium and free radicals in reperfusion injury: and overview of studies in ischaemic rabbit kidneys. Free Radic Res Commun. 1989;7(3-6):255-64.

Jahan K, Mahmood D, Fahim M. Effects of methanol in blood pressure and heart rate in the rat. J Pharm Bioallied Sci. 2015;7(1):60-4.

Jakubczyk K, Dec K, Kałduńska J, Kawczuga D, Kochman J, Janda K. Reactive oxygen species - sources, functions, oxidative damage. Pol Merkur Lekarski. 2020;48(284):124-127.

Koivula T, Koivusalo M. Different forms of rat liver aldehyde dehydrogenase and their subcellular distribution. Biochim Biophys Acta. 1975;397(1):9-23.

Kraut JA, Kurtz I. Toxic alcohol ingestions: clinical features, diagnosis, and management. Clin J Am Soc Nephrol. 2008;3(1):208-25.

Kruse JA. Methanol poisoning. Intensive Care Med. 1992;18(7):391-7.

Kumbasar S, Cetin N, Yapca OE, Sener E, Isaoglu U, Salman S, et al. Exogenous ATP administration prevents ischemia/ reperfusion-induced oxidative stress and tissue injury by modulation of hypoxanthine metabolic pathway in rat ovary. Ciênc Rural. 2014;44(7):1257-1263.

Kuteifan K, Oesterle H, Tajahmady T, Gutbub A, Laplatte G. Necrosis and haemorrhage of the putamen in methanol poisoning shown on MRI. Neuroradiology. 1998;40(3):158-60.

Liesivuori J, Savolainen H. Methanol and formic acid toxicity: biochemical mechanisms. Pharmacol Toxicol. 1991;69(3):157-63.

Liu JJ, Daya MR, Carrasquillo O, Kales SN. Prognostic factors in patients with methanol poisoning. J Toxicol Clin Toxicol. 1998;36(3):175-81.

Mika OJ, Weissmannova-Dolezalova H, Fiserova L. Mass methanol poisonings in the Czech Republic. Toxin Reviews. 2014;33(3):101-106.

Ohkawa H, Ohishi N, Yagi K. Assay for lipid peroxides in animal tissues by thiobarbituric acid reaction. Anal Biochem. 1979;95(2):351-8.

Parthasarathy NJ, Kumar RS, Manikandan S, Devi RS. Methanol-induced oxidative stress in rat lymphoid organs. J Occup Health. 2006;48(1):20-7.

Perazella MA. Renal vulnerability to drug toxicity. Clin J Am Soc Nephrol . 2009;4(7):1275-1283.

Prabhakaran V, Ettler H, Mills A. Methanol poisoning: two cases with similar plasma methanol concentrations but different outcomes. CMAJ. 1993;148(6):981-4.

Rajamani R, Muthuvel A, Senthilvelan M, Sheeladevi R. Oxidative stress induced by methotrexate alone and in the presence of methanol in discrete regions of the rodent brain, retina and optic nerve. Toxicol Lett. 2006;165(3):265-73.

Rappaport L, Oliviero P, Samuel J. Cytoskeleton and mitochondrial morphology and function. In Bioenergetics of the Cell: Quantitative Aspects. 1998; pp 101-105.

Šálek T, Humpolíček P, Ponížil P. Metabolic disorders due to methanol poisoning. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 2014;158(4):635-9.

Schalinske KL, Steele RD. Methotrexate alters carbon flow through the hepatic folatedependent one-carbon pool in rats. Carcinogenesis. 1996;17(8):1695-700.

Sedlak J, Lindsay RH. Estimation of total, protein-bound, and nonprotein sulfhydryl groups in tissue with Ellman’s reagent. Anal Biochem . 1968;25(1):192-205.

Šimůnek T, Štěrba M, Popelová O, Adamcová M, Hrdina R, Geršl V. Anthracycline-induced cardiotoxicity: overview of studies examining the roles of oxidative stress and free cellulariron. Pharmacol Rep. 2009;61(1):154-71.

Siggaard-Andersen O, Ulrich A, Gøthgen IH. Classes of tissue hypoxia. Acta Anaesthesiol Scand Suppl. 1995;107:137-42.

Spitz DR, Sullivan SJ, Malcolm RR, Roberts RJ. Glutathione dependent metabolism and detoxification of 4-hydroxy-2-nonenal. Free Radic Biol Med . 1991;11(4):415-23.

Taşlı NG, Çimen FK, Karakurt Y, Uçak T, Mammadov R, Süleyman B, et al. Protective effects of Rutin against methanol induced acute toxic optic neuropathy: an experimental study. Int J Ophthalmol. 2018;11(5):780-785.

Tephly TR. The toxicity of methanol. Life Sci . 1991;48(11):1031-41.

Thomas AP, Rozanski DJ, Renard DC, Rubin E. Effects of ethanol on the contractile function of the heart: a review. Alcohol Clin Exp Res. 1994;18(1):121-31.

Thygesen K, Alpert JS, Jaffe AS, Chaitman BR, Bax JJ, Morrow DA, et al. Fourth universal definition of myocardial infarction. J Am Coll Cardiol. 2018;72(18):2231-2264.

White JF, Carlson GP. Epinephrine-induced cardiac arrhythmias in rabbits exposed to trichloroethylene: Potentiation by ethanol. Toxicol Appl Pharmacol . 1981;60(3):466-71.

Williamson JR. Mitochondrial function in the heart. Annu Rev Physiol. 1979;41:485-506.

Wojtacki J, Lewicka-Nowak E, Lesniewski-Kmak K. Anthracycline-induced cardiotoxicity: clinical course, risk factors, pathogenesis, detection and prevention-review of the literature. Med Sci Monit. 2000;6(2):411-20.

Wolfson AB, Singer I. Hemodialysis-related emergencies-Part II. J Emerg Med. 1988;6(1):61-70.

Downloads

Published

2023-05-08

Issue

Section

Original Article

How to Cite

The preventive effect of exogenous adenosine triphosphate on methanol-induced cardiotoxicity in rats. (2023). Brazilian Journal of Pharmaceutical Sciences, 59, e21220. https://doi.org/10.1590/s2175-97902023e21220