Reembasadores resilientes com atividade antimicrobiana

Autores

  • Simone Kreve Universidade de São Paulo. Faculdade de Odontologia de Ribeirão Preto https://orcid.org/0000-0001-5599-4450
  • Carla Larissa Vidal Universidade de São Paulo. Faculdade de Odontologia de Ribeirão Preto
  • Oswaldo Luiz Alves Universidade Estadual de Campinas
  • Andréa Cândido dos Reis Universidade de São Paulo. Faculdade de Odontologia de Ribeirão Preto

DOI:

https://doi.org/10.11606/issn.2357-8041.clrd.2020.169582

Palavras-chave:

Reembasadores de Dentadura, Nanotecnologia, Propriedades Mecânicas, Polímeros

Resumo

Objetivo: Desenvolver um material para refinação de próteses e avaliar suas propriedades microbiológicas e mecânicas. O revestimento proposto foi obtido por meio da incorporação de vanadato de prata nanoestruturado (AgVO3) em 0, 1, 2,5, 5 e 10% de polimetilmetacrilato de metila (PEMA) contendo plastificante. Métodos: A eficácia antimicrobiana foi avaliada pelo método de Kirby-Bauer contra Enterococcus faecalis, Pseudomonas aeruginosa, Candida albicans e Staphyloccocus aureus (n = 5); e propriedades mecânicas como rugosidade também foram avaliadas por meio do teste de dureza Shore A e teste de tração. Os resultados foram analisados por ANOVA e teste de Tukey (α = 0,05). Resultados: O material com AgVO3 nas concentrações de 1% e 2,5% apresentou atividade antimicrobiana para E. faecalis, e 5% e 10% foram eficazes para E. faecalis, P. aeruginosa e C. albicans. No grupo de 5%, a dureza permaneceu inalterada (p < 0,001). Nenhuma das concentrações testadas alterou significativamente a rugosidade e a resistência à tração (P > 0,05). Conclusão: A obtenção do material com potencial antimicrobiano promoveu eficácia contra E. faecalis, P. aeruginosa e C. albicans, manteve a propriedade de rugosidade inalterada, não mudou a propriedade de adesão do material ao polimetilmetacrilato e manteve os valores de dureza compatível com revestimentos de reembasadores de dentadura resilientes.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Simone Kreve, Universidade de São Paulo. Faculdade de Odontologia de Ribeirão Preto

    Departamento de Materiais Dentários e Prótese da Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo (Forp-USP), Ribeirão Preto (SP), Brasil

  • Carla Larissa Vidal, Universidade de São Paulo. Faculdade de Odontologia de Ribeirão Preto

    Departamento de Materiais Dentários e Prótese da Faculdade de Odontologia de Ribeirão Preto – Universidade de São Paulo (Forp-USP), Ribeirão Preto (SP), Brasil

  • Oswaldo Luiz Alves, Universidade Estadual de Campinas

    Laboratório de Química do Estado Sólido, Universidade Estadual de Campinas (Unicamp), Campinas (SP), Brasil

  • Andréa Cândido dos Reis, Universidade de São Paulo. Faculdade de Odontologia de Ribeirão Preto

    Departamento de Materiais Dentários e Prótese, Faculdade de Odontologia de Ribeirão Preto, Universidade de São Paulo (Forp-USP), Ribeirão Preto (SP), Brasil

Referências

Dayrell A, Takahashi J, Valverde G, Consani R, Ambrosano G, Mesquita M. Effect of sealer coating on mechanical and physical properties of permanent soft lining materials. Gerodontology. 2012; 29:e401-e407. doi: https://doi.org/10.1111/j.1741-2358.2011.00487.x

Saravanan M, Kumar VA, Padmanabhan TV, Banu F. Viscoelastic properties and antimicrobial effects of soft liners with silver zeolite in complete dental prosthesis wearers: an in vivo study. Int J Prosthodont. 2015;28:265-9. doi: https://doi.org/10.11607/ijp.3740

Chladek G, Żmudzki J, Kasperski J. Long-term soft denture lining materials. Materials. 2014;7:581642. doi: https://doi.org/10.3390/ma7085816

Bacchi A, Consani RL, Mesquita MF, Santos MB. Influence of different mucosal resiliency and denture reline on stress distribution in peri‐implant bone tissue during osseointegration. A three‐dimensional finite element analysis. Gerodontology. 2012;29:e833-e837. doi: https://doi.org/10.1111/j.1741-2358.2011.00569.x

Zarb GA, Carlsson GE, Bolender CL. Boucher’s prosthodontic treatment for edentulous patients. 11th ed. St. Louis: Mosby; 2013.

Kim JH, Choe HC, Son MK. Evaluation of adhesion of reline resins to the thermoplastic denture base resin for non-metal clasp denture. Dent Mater J. 2014;33(1):32-8. doi: https://doi.org/10.4012/dmj.2013-121

Urban VM, Lima TF, Bueno MG, Giannini M, Arioli Filho JN, Almeida ALP, et al. Effect of the addition of antimicrobial agents on Shore A hardness and roughness of soft lining materials. J Prosthodont. 2014;24:207-14. doi: https://doi.org/10.1111/jopr.12205

Cha HS, Yu B, Lee YK. Changes in stress relaxation property and softness of soft denture lining materials after cyclic loading. Dent Mater. 2011;27:291-7. doi: https://doi.org/10.1016/j.dental.2010.11.004

Mayer FL, Wilson D, Hube B. Candida albicans pathogenicity mechanisms. Virulence. 2013;4:119-28. doi: https://doi.org/10.4161/viru.22913

Przybyłowska D, Mierzwińska‐Nastalska E, Swoboda‐Kopeć E, Rubinsztajn R, Chazan R. Potential respiratory pathogens colonisation of the denture plaque of patients with chronic obstructive pulmonary disease. Gerodontology. 2016;33:322-7. doi: https://doi.org/10.1111/ger.12156

De Castro DT, Valente ML, Silva CH, Watanabe E, Siqueira RL, Schiavon MA, et al. Evaluation of antibiofilm and mechanical properties of new nanocomposites based on acrylic resins and silver vanadate nanoparticles. Arch Oral Biol. 2016;67:46-53. doi: https://doi.org/10.1016/j.archoralbio.2016.03.002

Holtz RD, Souza Filho AG, Brocchi M, Martins D, Durán N, Alves OL. Development of nanostructured silver vanadates decorated with silver nanoparticles as a novel antibacterial agent. Nanotechnol. 2010;21(18):185102. doi: https://doi.org/10.1088/0957-4484/21/18/185102

Sands KM, Wilson MJ, Lewis MA, Wise MP, Palmer N, Hayes AJ, et al. Respiratory pathogen colonization of dental plaque, the lower airways, and endotracheal tube biofilms during mechanical ventilation. J Crit Care. 2017;37:30-7. doi: https://doi.org/10.1016/j.jcrc.2016.07.019

Schlecht LM, Peters BM, Krom BP, Freiberg JA, Hänsch GM, Filler SG, et al. Systemic Staphylococcus aureus infection mediated by Candida albicans hyphal invasion of mucosal tissue. Microbiology. 2015;161:168-81. doi: https://doi.org/10.1099/mic.0.083485-0

Tan Y, Leonhard M, Moser D, Schneider-Stickler B. Inhibition activity of Lactobacilli supernatant against fungal-bacterial multispecies biofilms on silicone. Microb Pathog. 2017;113:197-201. doi: https://doi.org/10.1016/j.micpath.2017.10.051

Gardete S, Tomasz A. Mechanisms of vancomycin resistance in Staphylococcus aureus. J Clin Invest. 2014;124:2836-40. doi: 10.1172/JCI68834. https://doi.org/10.1172/JCI68834

Gurusamy V, Krishnamoorthy R, Boopathy G, Veeraragavan V, Neelamegam P. Systematic investigation on hydrazine hydrate assisted reduction of silver nanoparticles and its antibacterial properties. Inorg Nano-Metal Chem. 2016;47:5,761-7. doi: https://doi.org/10.1080/15533174.2015.1137074

Chladek G, Kasperski J, Barszczewska-Rybarek I, Żmudzki J. Sorption, solubility, bond strength and hardness of denture soft lining incorporated with silver nanoparticles. Int J Mol Sci. 2013;14:563-74. doi: https://doi.org/10.3390/ijms14010563

Neppelenbroek KH, Lima JFM, Hotta J, Galitesi LL, Almeida ALPF, Urban VM. Effect of incorporation of antifungal agents on the ultimate tensile strength of temporary soft denture liners. J Prosthodon. 2018;27:177-81. doi: https://doi.org/10.1111/jopr.12660

Srivatstava A, Ginjupalli K, Perampalli NU, Bhat N, Ballal M. Evaluation of the properties of a tissue conditioner containing origanum oil as an antifungal additive. J Prosthet Dent. 2013;110:313-9. doi: https://doi.org/10.1016/S0022-3913(13)60381-9

Muttagi S, Subramanya JK. Effect of incorporating seed oils on the antifungal property, surface roughness, wettability, weight change, and glucose sorption of a soft liner. J Prosthet Dent. 2017;117:178-85. doi: https://doi.org/10.1016/j.prosdent.2016.05.010

Downloads

Publicado

2020-09-24

Edição

Seção

Artigos originais