Abordagem histórico-dialética dos conceitos na organização do ensino da matemática

Autores

  • Vanessa Dias Moretti Universidade Federal de São Paulo
  • Luis Radford Laurentian University

DOI:

https://doi.org/10.1590/S1678-4634202349252104

Palavras-chave:

Organização do ensino, Teoria histórico-cultural, História da matemática, Ontogênese, Filogênese

Resumo

Ao partirmos da proposta vigotskiana da unidade dialética entre ontogênese e filogênese como força motriz do desenvolvimento cultural na atividade humana, discutimos aspectos da organização do ensino da matemática fundamentando a relação entre atividade humana, prática social e história dos conceitos na perspectiva histórico-cultural. Nesse sentido, defendemos que também é possível compreender que a unidade entre os aspectos lógicos e históricos do objeto de conhecimento se objetivam para o ser cognoscente por meio da atividade humana de caráter coletivo. Assim, a tomada de consciência de conceitos históricos se dá em atividades humanas e resulta da produção crítica de sentido dos conceitos históricos em jogo, seus motivos e necessidades, emergindo a importância de estudar os conceitos no seu processo de produção, juntamente com as significações culturais intrínsecas à cultura em que estão inseridas. Como resultado, a proposição dos problemas com base na história da matemática, como nós entendemos, só pode ser desencadeadora de aprendizagem por meio de um trabalho conjunto com o professor. Neste sentido, a história da matemática é esclarecedora tanto ao inspirar atividades impregnadas de necessidades humanas do conceito, quanto ao permitir ao professor compreender os limites dos problemas matemáticos que podem ser formulados, bem como a mediação necessária para que os estudantes se tornem criativamente conscientes dos caminhos teóricos de pensar matematicamente.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

BARBIN, Evelyne. Histoire et enseignement des mathématiques: Pourquoi? Comment? Bulletin AMQ, Montréal, v. 37, n. 1, p. 20-25, 1997.

BARWELL, M. E. The advisability of including some instruction in the school course on the history of mathematics. The Mathematical Gazette, Leicester, v. 7, n. 104, p. 72-79, 1913.

BROUSSEAU, Guy. Introdução ao estudo das situações didáticas: conteúdos e métodos de ensino. São Paulo: Ática, 2008.

CLARK, Kathleen M. History and pedagogy of mathematics in mathematics education: history of the field, the potential of current examples, and directions for the future. In: CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION, 11., 2019, Utrecht. Proceedings […]. Utrecht: Utrecht University, 2019. p. 29-55.

FAUVEL, John; MAANEN, Jan van. History in mathematics education: the ICMI study. Berlin: Springer Dordrecht, 2000.

FRASER, Ian. Hegel and Marx: the concept of need. Edinburgh: Edinburgh University Press, 1998.

FRIED, Michael N. Can mathematics education and history of mathematics coexist? Science & Education, New York, v. 10, p. 391-408, 2001.

FURINGHETTI, Fulvia. Rethinking history and epistemology in mathematics education. International Journal of Mathematical Education in Science and Technology, Abingdon, v. 51, n. 6, p. 967-994, 2020.

FURINGHETTI, Fulvia; RADFORD, Luis. Contrasts and oblique connections between historical conceptual developments and classroom learning in mathematics. In: ENGLISH, Lyn D.; KIRSHNER, David (ed.). Handbook of international research in mathematics education. 2. ed. New York: Taylor and Francis, 2008. p. 626-655.

GUILLEMETTE, David. History of mathematics in secondary school teachers’ training: towards a nonviolent mathematics education. Educational Studies in Mathematics, New York, v. 96, n. 3, p. 349-365, 2017.

HØYRUP, Jens. In measure, number, and weight: studies in mathematics and culture. Albany: State University of New York Press, 1994.

JANKVIST, Uffe Thomas. A categorization of the “whys” and “hows” of using history in mathematics education. Educational Studies in Mathematics, New York, v. 71, n. 3, p. 235-261, 2009.

KOPNIN, Pável Vassílievitch. A dialética como lógica e teoria do conhecimento. Rio de Janeiro: Civilização Brasileira, 1978.

LEONTIEV, Alexei Nikolaevich. Actividad, conciencia, personalidad. La Habana: Pueblo Y Educación, 1983.

LEONTIEV, Alexei Nikolaevich. The problem of activity in psychology. Soviet Psychology, [S. l.], v. 13, n. 2, p. 4-33, 1974.

LEONTIEV, Alexei Nikolaevich. Uma contribuição à teoria de desenvolvimento da psique infantil. In: VIGOTSKI, Lev Semionovich; LURIA, Alexander Romanovich; LEONTIEV, Alexei Nikolaevich. Linguagem, desenvolvimento e aprendizagem. São Paulo: Ícone, 2001. p. 59-83.

MARX, Karl; ENGELS, Friedrich. A ideologia alemã. 9. ed. São Paulo: Hucitec, 1993.

MIGUEL, Antonio. As potencialidades pedagógicas da história da matemática em questão: argumentos reforçadores e questionadores. Zetetiké, Campinas, v. 5, n. 2, p. 73-89, 1997.

MIGUEL, Antonio. Contribuição crítica à discussão acerca da participação da história e da epistemologia da matemática na investigação em educação matemática. Horizontes, Bragança Paulista, v. 22, n. 1, p. 71-107, 2004.

MORETTI, Vanessa Dias. O problema lógico-histórico: aprendizagem conceitual e formação de professores de matemática. Poiésis, Tubarão, v.8, ed. esp. p. 29-44, 2014.

MORETTI, Vanessa Dias; MOURA, Manoel Oriosvaldo de. Professores de matemática em atividade de ensino: contribuições da perspectiva histórico-cultural para a formação docente. Ciência & Educação, Bauru, v. 17, n. 2, p. 435-450, 2011.

MORETTI, Vanessa Dias; PANOSSIAN, Maria Lúcia; MOURA, Manoel Oriosvaldo de. Educação, educação matemática e teoria cultural da objetivação: uma conversa com Luis Radford. Educação e Pesquisa, São Paulo, v. 41, n. 1, p. 243-260, jan./mar. 2015. Entrevista concedida por Luis Radford. Disponível em: http://www.scielo.br/pdf/ep/v41n1/1517-9702-ep-41-1-0243.pdf Acesso em: 30 abr. 2021.

» http://www.scielo.br/pdf/ep/v41n1/1517-9702-ep-41-1-0243.pdf

MORETTI, Vanessa Dias; RADFORD, Luis. História do conceito culturalmente significada e a organização da atividade de ensino de matemática. In: SEMINÁRIO INTERNACIONAL DE PESQUISA EM EDUCAÇÃO MATEMÁTICA, 6., 2015, Pirenópolis. Anais […]. Brasília, DF: SBEM, 2015. p. 1-12.

MOURA, Manoel Oriosvaldo de et al. Atividade orientadora de ensino: unidade entre ensino e aprendizagem. Revista Diálogo Educacional, Curitiba, v. 10, n. 29, p. 205-229, 2010.

ORTEGA Y GASSET, José. Meditación de la técnica. Madrid: Alianza, 2002.

RADFORD, Luis. Cultura e historia: dos conceptos difíciles y controversiales en aproximaciones contemporáneas en la educación matemática. In: MENDES, Iran Abreu; SILVA, Carlos Aldemir Farias da (ed.). Cultura, práticas sociais e educação matemática. São Paulo: Livraria da Física, 2014. p. 49-68.

RADFORD, Luis. Elementos de una teoría cultural de la objetivación. Revista Latinoamericana de Investigación en Matemática Educativa, México, DF, v. 9, ed. esp. p. 103-129, 2006.

RADFORD, Luis. Epistemology as a research category in mathematics teaching and learning. In: HODGSON, Bernard R.; KUZNIAK, Alain; LAGRANGE, Jean-Baptiste (ed.). The didactics of mathematics: approaches and issues. Cham: Springer, 2016. p. 31-41.

RADFORD, Luis. Historical formation and student understanding of mathematics. In: FAUVEL, John; MAANEN, Jan van. History in mathematics education: the ICMI study. Berlin: Springer Dordrecht, 2000. p. 143-170.

RADFORD, Luis. On psychology, historical epistemology, and the teaching of mathematics: towards a socio-cultural history of mathematics. For the Learning of Mathematics, New Westminster, v. 17, n. 1, p. 26-33, 1997.

RADFORD, Luis. On the epistemology of the Theory of Objectification. In: CONGRESS OF THE EUROPEAN SOCIETY FOR RESEARCH IN MATHEMATICS EDUCATION, 11., 2019, Utrecht. Proceedings […]. Utrecht: Utrecht University, 2019. p. 3062-3069.

RADFORD, Luis. Saber y conocimiento desde la perspectiva de la teoría de la objetivación. In: D’AMORE, Bruno; RADFORD, Luis. Enseñanza y aprendizaje de las matemáticas: problemas semióticos, epistemológicos y prácticos. Bogotá: Universidad Distrital Francisco José de Caldas, 2017a. p. 97-114.

RADFORD, Luis. Ser, subjetividad y alienación. In: D’AMORE, Bruno; RADFORD, Luis. Enseñanza y aprendizaje de las matemáticas: problemas semióticos, epistemológicos y prácticos. Bogotá: Universidad Distrital Francisco José de Caldas, 2017b. p. 137-165.

RADFORD, Luis. Sobre psicologia, epistemologia histórica e o ensino da Matemática: rumo a uma história sociocultural da Matemática. In: RADFORD, Luis. Cognição matemática: história, antropologia e epistemologia. São Paulo: Livraria da Física, 2011. p. 73-97.

RADFORD, Luis. The emergence of symbolic algebraic thinking in primary school. In: KIERAN, Carolyn (ed.). Teaching and learning algebraic thinking with 5- to 12-year-olds: the global evolution of an emerging field of research and practice. Cham: Springer, 2018. p. 3-25.

RADFORD, Luis. The seen, the spoken and the written: a semiotic approach to the problem of objectification of mathematical knowledge. For the Learning of Mathematics, New Westminster, v. 22, n. 2, p. 14-23, 2002.

RADFORD, Luis. Three key concepts of the theory of objectification: knowledge, knowing, and learning. Journal of Research in Mathematics Education, Reston, v. 2, n. 1, p. 7-44, 2013.

RADFORD, Luis; PUIG, Luis. Syntax and meaning as sensuous, visual, historical forms of algebraic thinking. Educational Studies in Mathematics, New York, v. 66, n. 2, p. 145-164, 2007.

RUBTSOV, Vitaly. A atividade de aprendizado e os problemas referentes à formação do pensamento teórico dos escolares. In: GARNIER, Catherine; BEDNARZ, Nadine; ULANOVSKAYA, Irina (org.). Após Vygotsky e Piaget: perspectivas social e construtivista – escolas russa e ocidental. Porto Alegre: ArtMed, 1996. p. 129-137.

VIANNA, Carlos Roberto. Matemática e história: algumas relações e implicações pedagógicas. 1995. Dissertação (Mestrado em Educação) – Universidade de São Paulo, São Paulo, 1995.

VIGOTSKI, Lev Semionovich. A formação social da mente. 6. ed. São Paulo: Martins Fontes, 2002.

VIGOTSKI, Lev Semionovich. Manuscrito de 1929 Psicologia concreta do homem. Educação & Sociedade, Campinas, v. 21, n. 71, p. 21-44, 2000.

VYGOTSKY, Lev Semionovich. Quarta aula: a questão do meio na pedologia. Psicologia USP, São Paulo, v. 21, n. 4, p. 681-701, 2010.

VYGOTSKY, Lev Semionovich. The collected works of L. S. Vygotsky: child psychology. v. 5. New York: Springer, 1998.

Downloads

Publicado

2023-12-22

Como Citar

Abordagem histórico-dialética dos conceitos na organização do ensino da matemática. (2023). Educação E Pesquisa, 49(contínuo), e252104. https://doi.org/10.1590/S1678-4634202349252104