Robotic rehabilitation in stroke patients

a protocol of a randomized clinical trial

Authors

DOI:

https://doi.org/10.1590/1809-2950/21020028042021%20%20

Abstract

The aim of this study was to propose a randomized clinical trial protocol to evaluate the effect of robotic rehabilitation on the functionality of patients with subacute stroke. This is a protocol of a randomized clinical trial that will be developed at hospital and rehabilitation center of Pavilhão Pereira Filho of ISCMPA. We will recruit 40 patients with stroke, all genders, aged between 18 and 85 years and showing hemiparesis or muscle weakness (Medical Research Council- MRC<48 points), who will be randomized to a control group or intervention group. The intervention group-besides conventional physical therapy-will perform robotic rehabilitation using Erigo® equipment. The control group, in its turn, will receive conventional physical therapy executing exercises with similar movements to those performed on the robot. Interventions will occur every day during hospital phase and three times/week after discharge, totaling approximately 18 sessions. Functioning will be considered the primary outcome of the study and will be assessed using the Fugl-Meyer scale. As secondary outcomes, we considered: muscle strength (MRC and maximum repetition test); spasticity (modified Ashworth scale); quadriceps muscle architecture and echogenicity (ultrasound); mobility (timed up go test); degree of disability and dependence (Rankin scale and Functional Independence Measure); quality of life (EQ-5D questionnaire); cardiorespiratory repercussions (monitoring vital signs); length of hospital stay (in days); and mortality (number of deaths). The groups will be evaluated before the interventions, after the 10th session, and at the end of six weeks of treatment or 18 sessions.

Downloads

Download data is not yet available.

References

Ministério da Saúde (BR). TabNet. Taxa de internação por AVC em maiores de 40 anos [Internet]. Brasília, DF: Ministério da Saúde; 2019 [cited 2020 01 04]. Available from: http://tabnet.saude.sp.gov.br/tabcgi.exe?tabnet/ind43_matriz.def

» http://tabnet.saude.sp.gov.br/tabcgi.exe?tabnet/ind43_matriz.def

Lee D, Lee G. Effect of afferent electrical stimulation with mirror therapy on motor function, balance, and gait in chronic stroke survivors: a randomized controlled trial. Eur J Phys Rehabil Med. 2019;55(4):442-9. doi: 10.23736/S1973-9087.19.05334-6.

» https://doi.org/10.23736/S1973-9087.19.05334-6

Cumming TB, Churilov L, Collier J, Donnan G, Ellery F, Dewey H, et al. Early mobilization and quality of life after stroke: findings from AVERT. Neurology. 2019;93(7):e717-28. doi: 10.1212/WNL.0000000000007937.

» https://doi.org/10.1212/WNL.0000000000007937

Kung DK, Chalouhi N, Jabbour PM, Starke RM, Dumont AS, Winn HR, et al. Cerebral blood flow dynamics and head-of-bed changes in the setting of subarachnoid hemorrhage. Biomed Res Int. 2013;2013:640638. doi: 10.1155/2013/640638.

» https://doi.org/10.1155/2013/640638

Wyller VB, Saul JP, Walløe L, Thaulow E. Sympathetic cardiovascular control during orthostatic stress and isometric exercise in adolescent chronic fatigue syndrome. Eur J Appl Physiol. 2008;102(6):623-32. doi: 10.1007/s00421-007-0634-1.

» https://doi.org/10.1007/s00421-007-0634-1

Frazzitta G, Zivi I, Valsecchi R, Bonini S, Maffia S, Molatore K, et al. Effectiveness of a very early stepping verticalization protocol in severe acquired brain injured patients: a randomized pilot study in ICU. PLoS One. 2016;11(7):e0158030. doi: 10.1371/journal.pone.0158030.

» https://doi.org/10.1371/journal.pone.0158030

Sorbera C, Portaro S, Cimino V, Leo A, Accorinti M, Silvestri G, et al. ERIGO: a possible strategy to treat orthostatic hypotension in progressive supranuclear palsy? A feasibility study. Funct Neurol. 2019;34(2):93-7.

Toccolini BF, Osaku EF, Macedo Costa CRL, Teixeira SN, Costa NL, Cândia MF, et al. Passive orthostatism (tilt table) in critical patients: clinicophysiologic evaluation. J Crit Care. 2015;30(3):655.e1-655.e6. doi: 10.1016/j.jcrc.2014.12.018.

» https://doi.org/10.1016/j.jcrc.2014.12.018

Calabrò RS, Naro A, Russo M, Leo A, Balletta T, Saccà I, et al. Do post-stroke patients benefit from robotic verticalization? A pilot-study focusing on a novel neurophysiological approach. Restor Neurol Neurosci. 2015;33(5):671-81. doi: 10.3233/RNN-140475.

» https://doi.org/10.3233/RNN-140475

Kuznetsov AN, Rybalko NV, Daminov VD, Luft AR. Early poststroke rehabilitation using a robotic tilt-table stepper and functional electrical stimulation. Stroke Res Treat. 2013;2013:946056. doi: 10.1155/2013/946056.

» https://doi.org/10.1155/2013/946056

Hermans G, Van den Berghe G. Clinical review: intensive care unit acquired weakness. Crit Care. 2015;19(1):274. doi: 10.1186/s13054-015-0993-7.

» https://doi.org/10.1186/s13054-015-0993-7

Michaelsen SM, Rocha AS, Knabben RJ, Rodrigues LP, Fernandes CGC. Tradução, adaptação e confiabilidade interexaminadores do manual de administração da escala de Fugl-Meyer. Braz J Phys Ther. 2011;15(1):80-8. doi: 10.1590/S1413-35552011000100013.

» https://doi.org/10.1590/S1413-35552011000100013

Clarke DH. Adaptations in strength and muscular endurance resulting from exercise. Exerc Sport Sci Rev. 1973;1:73-102.

Bohannon RW, Smith MB. Interrater reliability of a modified Ashworth scale of muscle spasticity. Phys Ther. 1987;67(2):206-7. doi: 10.1093/ptj/67.2.206.

» https://doi.org/10.1093/ptj/67.2.206

Baroni BM, Rodrigues R, Franke RA, Geremia JM, Rassier DE, Vaz MA. Time course of neuromuscular adaptations to knee extensor eccentric training. Int J Sports Med. 2013;34(10):904-11. doi: 10.1055/s-0032-1333263.

» https://doi.org/10.1055/s-0032-1333263

Fritsch CG, Dornelles MP, Severo-Silveira L, Marques VB, Rosso IA, Baroni BM. Effects of low-level laser therapy applied before or after plyometric exercise on muscle damage markers: randomized, double-blind, placebo-controlled trial. Lasers Med Sci. 2016;31(9):1935-42. doi: 10.1007/s10103-016-2072-y.

» https://doi.org/10.1007/s10103-016-2072-y

Faria CDCM, Teixeira-Salmela LF, Araújo PA, Polese JC, Nascimento LR, Nadeau S. TUG-ABS Português-Brasil: instrumento para avaliação clínica da mobilidade de hemiparéticos pós-AVC. Rev Neurocienc. 2015;23(3):357-67. doi: 10.4181/RNC.2015.23.03.1050.11p.

» https://doi.org/10.4181/RNC.2015.23.03.1050.11p

Van Uem JMT, Walgaard S, Ainsworth E, Hasmann SE, Heger T, Nussbaum S, et al. Quantitative timed-up-and-go parameters in relation to cognitive parameters and health-related quality of life in mild-to-moderate Parkinson's disease. PLoS One. 2016;11(4):e0151997. doi: 10.1371/journal.pone.0151997.

» https://doi.org/10.1371/journal.pone.0151997

van Lummel RC, Walgaard S, Hobert MA, Maetzler W, van Dieën JH, Galindo-Garre F, et al. Intra-rater, inter-rater and test-retest reliability of an instrumented timed up and go (iTUG) test in patients with Parkinson's disease. PLoS One. 2016;11(3):e0151881. doi: 10.1371/journal.pone.0151881.

» https://doi.org/10.1371/journal.pone.0151881

Caneda MAG, Fernandes JG, Almeida AG, Mugnol FE. Confiabilidade de escalas de comprometimento neurológico em pacientes com acidente vascular cerebral. Arq Neuropsiquiatr. 2006;64(3-A):690-7. doi: 10.1590/s0004-282x2006000400034.

» https://doi.org/10.1590/s0004-282x2006000400034

Riberto M, Miyazaki MH, Jucá SSH, Sakamoto H, Pinto PPN, Battistella LR. Validação da versão brasileira da medida de independência funcional. Acta Fisiatrica. 2004;11(2):72-6. doi: 10.5935/0104-7795.20040003.

» https://doi.org/10.5935/0104-7795.20040003

Ferreira PL, Ferreira LN, Pereira LN. Contributos para a validação da versão portuguesa do EQ-5D. Acta Med Port. 2013;26(6):664-75.

Farup J, Kjølhede T, Sørensen H, Dalgas U, Møller AB, Vestergaard PF, et al. Muscle morphological and strength adaptations to endurance vs. resistance training. J Strength Cond Res. 2012;26(2):398-407. doi: 10.1519/JSC.0b013e318225a26f.

» https://doi.org/10.1519/JSC.0b013e318225a26f

Balshaw TG, Massey GJ, Maden-Wilkinson TM, Morales-Artacho AJ, McKeown A, Appleby CL, et al. Changes in agonist neural drive, hypertrophy and pre-training strength all contribute to the individual strength gains after resistance training. Eur J Appl Physiol. 2017;117(4):631-40. doi: 10.1007/s00421-017-3560-x.

» https://doi.org/10.1007/s00421-017-3560-x

Winstein CJ, Stein J, Arena R, Bates B, Cherney LR, Cramer SC, et al. Guidelines for adult stroke rehabilitation and recovery: a guideline for healthcare professionals from the American Heart Association/American Stroke Association. Stroke. 2016;47(6):e98-169.

Craven CTD, Gollee H, Coupaud S, Purcell MA, Allan DB. Investigation of robotic-assisted tilt-table therapy for early-stage spinal cord injury rehabilitation. J Rehabil Res Dev. 2013;50(3):367-78. doi: 10.1682/JRRD.2012.02.0027.

» https://doi.org/10.1682/JRRD.2012.02.0027

Taveggia G, Ragusa I, Trani V, Cuva D, Angeretti C, Fontanella M, et al. Robotic tilt table reduces the occurrence of orthostatic hypotension over time in vegetative states. Int J Rehabil Res. 2015;38(2):162-6. doi: 10.1097/MRR.0000000000000104.

» https://doi.org/10.1097/MRR.0000000000000104

Tøien T, Haglo HP, Unhjem R, Hoff J, Wang E. Maximal strength training: the impact of eccentric overload. J Neurophysiol. 2018;120(6):2868-76. doi: 10.1152/jn.00609.2018.

Published

2023-02-23

Issue

Section

Original Research

How to Cite

Robotic rehabilitation in stroke patients: a protocol of a randomized clinical trial. (2023). Fisioterapia E Pesquisa, 28(4), 483-490. https://doi.org/10.1590/1809-2950/21020028042021