Métodos clínicos de evaluación dinámica y cuantitativa del complejo del hombro y escápula: una revisión de alcance

Autores/as

DOI:

https://doi.org/10.1590/1809-2950/220060300822PT%20

Palabras clave:

Reproductibilidad de los Resultados, Rango del Movimiento Articular, Estudios de Evaluación como Asunto

Resumen

La articulación del hombro tiene la mayor amplitud de
movimiento y es más susceptible a disfunciones. Las evaluaciones
dinámicas y cuantitativas de esta región proporcionan mejores
informaciones para la clínica, pero la elección del método a utilizar
depende de sus propiedades de medición. El objetivo de este
estudio fue identificar los métodos existentes de evaluación
dinámica cuantitativa del complejo del hombro y escápula en
un contexto clínico para la población general, identificando
las propiedades de medición y los resultados evaluados para
cada método. La revisión de alcance incluyó estudios in vivo,
con muestras sin una condición clínica específica y con métodos
aplicables en un contexto clínico. Se identificaron el resultado
evaluado, el método de medición y sus propiedades de medición.
Se seleccionaron 29 estudios que investigaron 12 métodos de
medición, y se evaluó su validez y confiabilidad para 17 resultados
diferentes. La posición del hombro y de la escápula, y los
resultados derivados fueron abordados por el mayor número
de estudios (n=21), y sus principales métodos de evaluación
fueron las unidades de medición inercial (n=5) y las unidades de
medición magnética inercial (n=6). Los resultados que presentaron
métodos válidos y confiables fueron: amplitud articular del hombro;
amplitud de movimiento de la escápula y del hombro; actividad
muscular; centro articular del hombro; longitud del húmero; curva
torque-tiempo; desempeño funcional; discinesia escapular; fuerza
de los rotadores externos del hombro; funcionalidad y amplitud
articular; movimiento escapular inicial; posición de la escápula y
del hombro; y velocidad angular del hombro.

Descargas

Los datos de descarga aún no están disponibles.

Referencias

Kapandji IA. The physiology of the joints: Volume 2. Lower limb. 6th ed. Londres: Churchill Livingstone; 2010.

Lange T, Struyf F, Schmitt J, Lützner J, Kopkow C. The reliability of physical examination tests for the clinical assessment of scapular dyskinesis in subjects with shoulder complaints: a systematic review. Phys Ther Sport. 2017;26:64–89. doi: 10.1016/j.ptsp.2016.10.006

Furness J, Johnstone S, Hing W, Abbott A, Climstein M. Assessment of shoulder active range of motion in prone versus supine: a reliability and concurrent validity study. Physiother Theory Pract. 2015;31:489–95. doi:10.3109/09593985.2015.1027070

Haik MN, Alburquerque-Sendín F, Camargo PR. Reliability and Minimal Detectable Change of 3-Dimensional Scapular Orientation in Individuals With and Without Shoulder Impingement. J Orthop Sports Phys Ther. 2014;44:341-9. doi: 10.2519/jospt.2014.4705

Fortenbaugh D, Fleisig GS, Andrews JR. Baseball pitching biomechanics in relation to injury risk and performance. Sports Health. 2009;1:314-20. doi: 10.1177/1941738109338546

Pain LAM, Baker R, Sohail QZ, Richardson D, Zabjek K, Mogk JPM, Agur AMR. Three-dimensional assessment of the asymptomatic and post-stroke shoulder: intra-rater test–retest reliability and within-subject repeatability of the palpation and digitization approach. Disabil Rehabil. 2019;41:1826-34. doi: 10.1080/09638288.2018.1451924

Sereno HR de S, Sheremetieff Júnior A. Guia para elaboração de um plano de manutenção da confiabilidade metrológica de instrumentos de medição - Escolha de instrumentos. V Congr Lat Am Metrol. Curitiba; 2007. p. 1-5.

Peters M, Godfrey C, McInerney P, Munn Z, Tricco AC, Khalil H. Chapter 11: Scoping Reviews (2020 version). In: Aromataris E, Munn Z, editors. JBI Man Evid Synth. JBI; 2020. p. 406-51.

Tricco AC, Lillie E, Zarin W, O’Brien KK, Colquhoun H, Levac D et al. PRISMA extension for scoping reviews (PRISMA-ScR): Checklist and explanation. Ann Intern Med. 2018;169:467-73. doi:10.7326/M18-0850

Mokkink LB, Terwee CB, Patrick DL, Alonso J, Stratford PW, Knol DL et al. The COSMIN study reached international consensus on taxonomy, terminology, and definitions of measurement properties for health-related patient-reported outcomes. J Clin Epidemiol. 2010;63:737-45. doi:10.1016/j.jclinepi.2010.02.006

Mokkink LB, Princen CAC, Patrick DL, Alonso J, Bouter LM, Vet HCW et al. COSMIN Study Design checklist for Patient-reported outcome measurement instruments. Amsterdam; 2019.

Höglund G, Grip H, Öhberg F. The importance of inertial measurement unit placement in assessing upper limb motion. Med Eng Phys. 2021 Jun;92:1-9. doi: 10.1016/j.medengphy.2021.03.010

van den Noort JC, Wiertsema SH, Hekman KMC, Schönhuth CP, Dekker J, Harlaar J. Reliability and precision of 3D wireless measurement of scapular kinematics. Med Biol Eng Comput. 2014;52:921–31. doi: 10.1007/s11517-014-1186-2

Morrow M, Lowndes B, Fortune E, Kaufman K, Hallbeck M. Validation of Inertial Measurement Units for Upper Body Kinematics. J Appl Biomech. 2017;33:227-32. doi:10.1123/jab.2016-0120

Picerno P, Viero V, Donati M, Triossi T, Tancredi V, Melchiorri G. Ambulatory assessment of shoulder abduction strength curve using a single wearable inertial sensor. J Rehabil Res Dev. 2015;52:171-80. doi:10.1038/s41598-019-50759-z

Oyama S, Sosa A, Campbell R, Correa A. Reliability and Validity of Quantitative Video Analysis of Baseball Pitching Motion. J Appl Biomech. 2017;33:64-8. doi:10.1123/jab.2016-0011

Ertzgaard P, Öhberg F, Gerdle B, Grip H. A new way of assessing arm function in activity using kinematic Exposure Variation Analysis and portable inertial sensors - A validity study. Man Ther. 2016;21:241-9. doi:10.1016/j.math.2015.09.004

Zhou H, Stone T, Hu H, Harris N. Use of multiple wearable inertial sensors in upper limb motion tracking. Med Eng Phys. 2008 Jan;30(1):123-33. doi: 10.1016/j.medengphy.2006.11.010

Melton C, Mullineaux DR, Mattacola CG, Mair SD, Uhl TL. Reliability of Video Motion-Analysis Systems to Measure Amplitude and Velocity of Shoulder Elevation. J Sport Rehabil. 2011;20:393-405. doi: 10.1123/jsr.20.4.393

Thigpen CA, Gross MT, Karas SG, Garrett WE, Yu B. The Repeatability of Scapular Rotations Across Three Planes of Humeral Elevation. Res Sports Med. 2005;13:181-98. doi:10.1080/15438620500222489

Parel I, Cutti AG, Fiumana G, Porcellini G, Verni G, Accardo AP. Ambulatory measurement of the scapulohumeral rhythm: Intra- and inter-operator agreement of a protocol based on inertial and magnetic sensors. Gait Posture. 2012 Apr;35(4):636-40. doi: 10.1016/j.gaitpost.2011.12.015

Parel I, Cutti AG, Kraszewski A, Verni G, Hillstrom H, Kontaxis A. Intra-protocol repeatability and inter-protocol agreement for the analysis of scapulo-humeral coordination. Med Biol Eng Comput. 2014;52:271-82. doi: 10.1007/s11517-013-1121-y

Xu X, Robertson M, Chen KB, Lin J, McGorry RW. Using the Microsoft KinectTM to assess 3-D shoulder kinematics during computer use. Appl Ergon. 2017 Nov;65:418-23. doi: 10.1016/j.apergo.2017.04.004

Jordan K, Dziedzic K, Jones PW, Ong BN, Dawes PT. The reliability of the three-dimensional FASTRAK measurement system in measuring cervical spine and shoulder range of motion in healthy subjects. Rheumatology. 2000;39:382-8. doi: 10.1093/rheumatology/39.4.382

Picerno P, Caliandro P, Iacovelli C, Simbolotti C, Crabolu M, Pani D et al. Upper limb joint kinematics using wearable magnetic and inertial measurement units: an anatomical calibration procedure based on bony landmark identification. Sci Rep. 2019;9(1):14449. doi: 10.1038/s41598-019-50759-z

Kuster RP, Heinlein B, Bauer CM, Graf ES. Accuracy of KinectOne to quantify kinematics of the upper body. Gait Posture. 2016 Jun; 47:80-5. doi: 10.1016/j.gaitpost.2016.04.004

Lee SH, Yoon C, Chung SG, Kim HC, Kwak Y, Park H et al. Measurement of Shoulder Range of Motion in Patients with Adhesive Capsulitis Using a Kinect. PLoS ONE. 2015;10(6):e0129398. doi:10.1371/journal.pone.0129398

Roldán-Jiménez C, Martin-Martin J, Cuesta-Vargas AI. Reliability of a Smartphone Compared With an Inertial Sensor to Measure Shoulder Mobility: Cross-Sectional Study. JMIR MHealth UHealth. 2019;7(9):e13640. doi: 10.2196/13640

Crabolu M, Pani D, Raffo L, Conti M, Crivelli P, Cereatti A. In vivo estimation of the shoulder joint center of rotation using magneto-inertial sensors: MRI-based accuracy and repeatability assessment. Biomed Eng OnLine. 2017;6(1):34. doi: 10.1186/s12938-017-0324-0

Crabolu M, Pani D, Raffo L, Conti M, Cereatti A. Functional estimation of bony segment lengths using magneto-inertial sensing: Application to the humerus. PLoS ONE. 2018 Sep 12;13(9):e0203861. doi: 10.1371/journal.pone.0203861

Jolles BM, Duc C, Coley B, Aminian K, Pichonnaz C, Bassin J-P et al. Objective evaluation of shoulder function using body-fixed sensors: a new way to detect early treatment failures? J Shoulder Elbow Surg. 2011;20:1074-81. doi:10.1016/j.jse.2011.05.026

Hackett L, Reed D, Halaki M, Ginn KA. Assessing the validity of surface electromyography for recording muscle activation patterns from serratus anterior. J Electromyogr Kinesiol. 2014;24(2):221-7. doi: 10.1016/j.jelekin.2014.01.007

Johansson FR, Skillgate E, Lapauw ML, Clijmans D, Deneulin VP, Palmans T et al. Measuring Eccentric Strength of the Shoulder External Rotators Using a Handheld Dynamometer: Reliability and Validity. J Athl Train. 2015;50:719-25. doi: 10.4085/1062-6050-49.3.72

MacDermid JC, Ghobrial M, Quirion KB, St-Amour M, Tsui T, Humphreys D et al. Validation of a new test that assesses functional performance of the upper extremity and neck (FIT-HaNSA) in patients with shoulder pathology. BMC Musculoskelet Disord. 2007;8(1):42. doi:10.1186/1471-2474-8-42

Popchak A, Poploski K, Patterson-Lynch B, Nigolian J, Lin A. Reliability and validity of a return to sports testing battery for the shoulder. Phys Ther Sport. 2021 Mar;48:1-11. doi: 10.1016/j.ptsp.2020.12.003

Totlis T, Kitridis D, Tsikopoulos K, Georgoulis A. A computer tablet software can quantify the deviation of scapula medial border from the thoracic wall during clinical assessment of scapula dyskinesis. Knee Surg Sports Traumatol Arthrosc. 2021;29:202-9. doi: 10.1007/s00167-020-05916-7

Pearl ML, van de Bunt F, Pearl M, Lightdale-Miric N, Rethlefsen S, Loiselle J. Assessing Shoulder Motion in Children: Age Limitations to Mallet and ABC Loops. Clin Orthop Relat Res. 2014;472:740-8. doi: 10.1007/s11999-013-3324-9

Seitz AL, Uhl TL. Reliability and minimal detectable change in scapulothoracic neuromuscular activity. J Electromyogr Kinesiol. 2012 Dec;22(6):968-74. doi: 10.1016/j.jelekin.2012.05.003

Larsen CM, Søgaard K, Eshoj H, Ingwersen K, Juul-Kristensen B. Clinical assessment methods for scapular position and function. An inter-rater reliability study. Physiother Theory Pract. 2019;36:1399-420. doi: 10.1080/09593985.2019.1579284

D’Entremont AG, Nordmeyer-Massner JA, Bos C, Wilson DR, Pruessmann KP. Do dynamic-based MR knee kinematics methods produce the same results as static methods? Magn Reson Med. 2013;69:1634-44. doi:10.1002/mrm.24425

Tal E. Measurement in Science [Internet]. The Stanford Encyclopedia of Philosophy. 2020 [cited 2021 Mar 30]. Available from: https://plato.stanford.edu/archives/fall2020/entries/measurement-science/

American Educational Research Association, American Psychological Association, National Council on Measurement in Education. Standards for Educational and Psychological Testing. Washington: American Educational Research Association; 2014.

Publicado

2022-10-10

Número

Sección

Artigo de Revisão

Cómo citar

Métodos clínicos de evaluación dinámica y cuantitativa del complejo del hombro y escápula: una revisión de alcance. (2022). Fisioterapia E Pesquisa, 29(3), 327-333. https://doi.org/10.1590/1809-2950/220060300822PT