Benefits of progressive resistance training on motor performance and muscular hypertrophy in rats with Parkinson’s disease

Authors

DOI:

https://doi.org/10.1590/1809-2950/e22016223pt

Keywords:

Parkinson's Disease, Exercises, Hipertrophy

Abstract

Parkinson’s disease (PD) is a progressive
neurodegenerative condition defined by the presence of primary
debilitating motor symptoms. This study aims to investigate the
benefits of high-intensity progressive resistance training on muscle
tissue and motor performance before and after the induction
of PD in rats. A total of 80 male Wistar rats (Rattus norvegicus,
var. albinus) aged 40 days and weighing between 250 and 450g
were used. A total of 40 animals were subjected to PD surgery
to induce electrolytic injury and were randomly assigned to the
following subgroups: animals trained before PD induction (PA-Exa);
animals trained after PD induction (PA-Exd); animals trained
before and after PD induction (PA-Exad); and sedentary animals
with PD induction (PA-Sed). The other 40 animals (control) were
subjected to surgical access but not to PD electrolytic injury (Sham)
and distributed in the same subgroups described above. For the
PD induction surgery, electrolytic stimulation was used at the
following coordinates: anteroposterior (AP) 4.9, mid-lateral (ML) 1.7,
and dorsoventral (DV) 8.1. High-intensity progressive resistance
training was performed on a vertical ladder five days/week from
30 to 45 minutes for four weeks. For our functional evaluation,
the parallel bars and the misstep tests were used at the beginning
(after surgery) and at the end of the experiment. After euthanasia,
the forelimb biceps and hindlimb flexor hallucis longus muscles
were removed. Processing, coloration, and histomorphometry
analysis of muscle tissue were performed for all groups. To analyze
the data, GraphPad Prism 9.4 was used with one-way analysis of
variance (ANOVA) and a p<0.05. Data on muscle fiber count and
area in forelimb biceps showed no significant differences, with a
0.853 and 0.4122 p-value, respectively. Flexor hallucis longus
muscle fiber count showed a significant difference (p=0.0356),
and PA-Exa and PA-Exd averaged the highest means. Hindlimb
flexor hallucis longus muscle fiber area also evinced a significant
difference (p=0.0306), in which PA-Exd, PA-Exad, and Sham-Exad
showed the largest areas. Analysis of hindlegs in the parallel bars
test showed that PA-Exad evinced the best functional performance.
In the misstep test, we observed an increase in the number of
errors animals made for almost all the groups, evincing a significant
difference in the number of errors before and after the test only
for PA-Exa, PA-Exd, and PA-Sed. We concluded that the animals
that underwent high-intensity progressive training showed better
performance in their hindlegs than in their fore ones and that
animals that exercised before and after surgery benefited more
from training

Downloads

Download data is not yet available.

References

Dorsey ER, Sherer T, Okun MS, Boelm BR. The emerging evidence of the Parkinson pandemic. J Parkinsons Dis. 2018;8(s1):S3-8. doi: 10.3233/JPD-181474.

Lees AJ, Hardy J, Revesz T. Parkinson’s disease. Lancet. 2009;373(9680):2055-66. doi: 10.1016/S0140-6736(09) 60492-X.

Freire LN, Rieder CRM, Schuh AFS, Dornelles S, Olchik MR. Impacto na qualidade de vida de portadores de doença Mesquita et al. Treinamento e hipertrofia em ratos com doença de Parkinson 9 de Parkinson com risco para disfagia. Rev Neurocienc. 2015;23(4):516-21. doi: 10.4181/RNC.2015.23.04.1065.06p.

Jankovic J. Parkinson’s disease: clinical features and diagnosis. J Neurol Neurosurg Psychiatry. 2008;79(4):368-76. doi: 10.1136/jnnp.2007.131045.

Cookson MR. α-Synuclein and neuronal cell death. Mol Neurodegener. 2009;4:9. doi: 10.1186/1750-1326-4-9.

Byers B, Lee HL, Pera RR. Modeling Parkinson’s disease using induced pluripotent stem cells. Curr Neurol Neurosci Rep. 2012;12(3):237-42. doi: 10.1007/s11910-012-0270-y.

Leandro LA, Teive HAG. Fatores associados ao desempenho funcional de idosos portadores da doença de Parkinson. Rev Kairos. 2017;20(2):161-78. doi: 10.23925/2176-901X.2017 v20i2p161-178.

Rizzo G, Copetti M, Arcuti S, Martino D, Fontana A, Logroscino G. Accuracy of clinical diagnosis of Parkinson disease: a systematic review and meta-analysis. Neurology. 2016;86(6):566-76. doi: 10.1212/WNL.0000000000002350.

Instituto Brasileiro de Geografia e Estatística. Projeção da população do Brasil e das unidades da Federação. Rio de Janeiro: IBGE; 2008.

Santos VL. Perfil epidemiológico da doença de Parkinson no Brasil. Faculdade de Ciências da Educação e Saúde Graduação em Biomedicina. Brasília (DF): Centro Universitário de Brasília; 2015 [cited 2015 Jan 13]. Available from: https://repositorio.uniceub.br/jspui/bitstream/235/6857/1/21202979.pdf

Villela B. Em 2030, mais de 600 mil brasileiros poderão sofrer do Mal de Parkinson. São Paulo: Pró-Saúde; 2019 [cited

Apr 11]. Available from: https://www.prosaude.org.br/noticias/em-2030-mais-de-600-mil-brasileiros-poderaosofrer-do-mal-de-parkinson/.

Ahlskog JE. Does vigorous exercise have a neuroprotective effect in Parkinson disease? Neurology. 2011;77(3):288-94. doi: 10.1212/WNL.0b013e318225ab66.

Petzinger GM, Fisher BE, McEwen S, Beeler JA, Walsh JP, Jakowec MW. Exercise-enhanced neuroplasticity targeting motor and cognitive circuitry in Parkinson’s disease. Lancet Neurol. 2013;12(7):716-26. doi: 10.1016/S1474-4422(13)70123-6.

Yang F, Trolle Lagerros Y, Bellocco R, Adami HO, Fang F, Pedersen NL, et al. Physical activity and risk of Parkinson’s disease in the Swedish National March Cohort. Brain. 2015;138(Pt 2):269-75. doi: 10.1093/brain/awu323.

Melo RTR, Damázio LCM, Lima MC, Pereira VG, Okano BS, Monteiro BS, et al. Effects of physical exercise on skeletal muscles of rats with cerebral ischemia. Braz J Med Biol Res. 2019;52(12):e8576. doi: 10.1590/1414-431X20198576.

Schenkman M, Moore CG, Kohrt WM, Hall DA, Delitto A, Comella CL, et al. Effect of high-intensity treadmill exercise on motor symptoms in patients with de novo Parkinson disease: a phase 2 randomized clinical trial. JAMA Neurol. 2018;75(2): 219-26. doi: 10.1001/jamaneurol.2017.3517.

Rubert VA, Reis DC, Esteves AC. Doença de Parkinson e exercício físico. Rev Neurocienc. 2007;15(2):141-6. doi: 10.34024/rnc.2007.v15.10279.

Peixinho-Pena LF, Fernandes J, Almeida AA, Novaes Gomes FG, Cassilhas R, Venancio DP, et al. A strength exercise program in rats with epilepsy is protective against seizures. Epilepsy Behav. 2012;25(3):323-8. doi: 10.1016/j.yebeh.2012.08.011.

Hornberger TA Jr, Farrar RP. Physiological hypertrophy of the FHL muscle following 8 weeks of progressive resistance exercise in the rat. Can J Appl Physiol. 2004;29(1):16-31. doi: 10.1139/h04-002.

Cassilhas RC, Reis IT, Venâncio D, Fernandes J, Tufik S, Mello MT. Animal model for progressive resistance exercise: a detailed description of model and its implications for basic research in exercise. Motriz Rev Educ Fis. 2013;19(1):178-84. doi: 10.1590/S1980-65742013000100018.

Lezcano LB, Pedre LCL, Verdecia CIF, Sánchez TS, Fuentes NP, Turner LF. Aplicación del teste de la barra transversal modificado para evaluar ratas hemiparkinsonizadas. Acta Biol Colomb. 2010;15(2):189-202.

Melo RTR, Damázio LCM, Lima MC, Carvalho PH, Pereira VG, Okano BS, et al. Analysis of motor performance and histomorphometry of skeletal muscles of rats exercised after cerebral ischemia. Int J Neurosci. 2022;132(5):497-506. doi: 10.1080/00207454.2020.1825416.

Ding Y, Zhou Y, Lai Q, Li J, Park H, Diaz FG. Impaired motor activity and motor learning function in rat with middle cerebral artery occlusion. Behav Brain Res. 2002;132(1):29-36. doi: 10.1016/s0166-4328(01)00405-3.

Ding Y, Li J, Lai Q, Rafols JA, Luan X, Diaz FG. Motor balance and coordination training enhances functional outcome in rat with transient middle cerebral artery occlusion. Neuroscience. 2004;123(3):667-74. doi: 10.1016/j.neuroscience.2003.08.031.

Lim SH, Lee JS, Lee JI, Im S, Ko YJ, Kim HW. The quantitative assessment of functional impairment and its correlation to infarct volume in rats with transient middle cerebral artery occlusion. Brain Res. 2008;1230:303-9. doi: 10.1016/j.brainres.2008.07.002.

Whishaw IQ, Suchowersky O, Davis L, Sarna J, Metz GA, Pellis SM. Impairment of pronation, supination, and body co-ordination in reach-to-grasp tasks in human Parkinson’s disease (PD) reveals homology to deficits in animal models. Behav Brain Res. 2002;133(2):165-76. doi: 10.1016/s0166-4328(01)00479-x.

Hayes MW, Fung VS, Kimber TE, O’Sullivan JD. Updates and advances in the treatment of Parkinson disease. Med J Aust. 2019;211(6):277-83. doi: 10.5694/mja2.50224.

Cheong SL, Federico S, Spalluto G, Klotz KN, Pastorin G. The current status of pharmacotherapy for the treatment of Parkinson’s disease: transition from single-target to multitarget therapy. Drug Discov Today. 2019;24(9):1769-83. doi: 10.1016/j.drudis.2019.05.003.

Moreno López CL, Bernal-Pacheco O, Barrios Vincos G, Cerquera Cleves SC. Enfermedad de Parkinson y covid-19: una pandemia en medio de otra. Acta Neurol Colomb. 2020;36(Suppl l):39-46. doi: 10.22379/24224022292.

Silva-Batista C, Lima-Pardini AC, Nucci MP, Coelho DB, Batista A, Piemonte MEP, et al. A randomized, controlled trial of exercise for Parkinsonian individuals with freezing of gait. Mov Disord. 2020;35(9):1607-17. doi: 10.1002/mds.28128.

Published

2023-06-06

Issue

Section

Original Research

How to Cite

Benefits of progressive resistance training on motor performance and muscular hypertrophy in rats with Parkinson’s disease. (2023). Fisioterapia E Pesquisa, 30(1), e22016223pt. https://doi.org/10.1590/1809-2950/e22016223pt