Evidence of submesoscale coastal eddies inside Todos Santos Bay, Baja California, México

Authors

  • Luis Felipe Navarro-Olache
  • Rafael Hernandez-Walls
  • Ruben Castro
  • Xavier Flores-Vidal
  • Ana Laura Flores-Morales
  • Beatriz Martin-Atienza

DOI:

https://doi.org/10.1590/

Keywords:

HF velocity data, Submesoscale, Okubo-Weiss parameter, Todos Santos bay

Abstract

Submesoscale eddies (1-10 km diameter) were identified using surface velocity observations obtained from a high-frequency radar system (HFR) operated in Todos Santos Bay (TSB), Baja California, Mexico. Eddies were detected through a special case of the Okubo-Weiss parameter for divergent flows in the form of eigenvalues of the Jacobian matrix. The detection method, applied for a surface velocity grid, shows encouraging results in the recognition and tracking of submesoscale features in TSB. The detection method is rapid and efficient. Results show the formation and persistence of an eddy structure inside the Bay in December 6, 2010, displaying a trajectory from NE to SW until disappearing at the center of the Bay. The eddy is approximately 4 km in diameter with a frequency of ~0.1f (f is the Coriolis parameter). The real part of the Okubo-Weiss parameter ranged between , and outlined the eddy for approximately 9 hours. Although it is difficult to identify the origin of the detected submesoscale eddy, its appearance coincided with a drop in relative atmospheric humidity suggesting land-ocean Santa Ana winds as a possible generating mechanism.

References

ALVAREZ, L. G., HERNANDEZ-WALLS, R. & DURAZO-ARVIZU, R. 1988. Patrones de deriva de trazadores lagrangeanos en la Bahia de todos Santos. Ciencias Marinas, 14(4), 135-162, DOI: https://doi.org/10.7773/cm.v14i4.609

» https://doi.org/10.7773/cm.v14i4.609

BUCKINGHAM, C. E. 2021. Submesoscale potential vorticity Washington: ESSOAr (Earth and Space Science Open Archive), DOI: https://doi.org/10.1002/essoar.10508902.1

» https://doi.org/10.1002/essoar.10508902.1

CHANG, Y. L. & LIE-YAUW, O. E. Y. 2014. Analysis of STCC eddies using the Okubo-Weiss parameter on model and satellite data. Ocean Dynamics, 64, 259-271, DOI: https://doi.org/10.1007/s10236-013-0680-7

» https://doi.org/10.1007/s10236-013-0680-7

CHELTON, D. B. & SCHLAX, M. G. 2003. The accuracies of smoothed sea surface height fields constructed from tandem altimeter datasets. Journal of Atmospheric and Oceanic Technology, 20(9), 1276-1302, DOI: https://doi.org/10.1175/1520-0426(2003)020<1276:TAOSSS>2.0.CO;2

» https://doi.org/10.1175/1520-0426(2003)020<1276:TAOSSS>2.0.CO;2

CHELTON, D. B., SCHLAX, M. G., SAMELSON, R. M. & SZOEKE R. A. 2007. Global observations of large oceanic eddies. Geophysical Research Letters, 34(15), L15606, DOI: https://doi.org/10.1029/2007GL030812

» https://doi.org/10.1029/2007GL030812

CIPOLLA, R. & BLAKE, A. 1997. Image divergence and deformation from closed curves. International Journal of Robotics Research, 16(1), 77-96, DOI: https://doi.org/10.1177/027836499701600106

» https://doi.org/10.1177/027836499701600106

FLORES-VIDAL, X., DURAZO, R., CASTRO, R., NAVARRO, L. F., DOMINGUEZ, F. & GIL, E. 2015. Fine-scale tidal and subtidal variability of an upwelling-influenced bay as measured by the Mexican high frequency radar observing system. In: LIU, Y., KERKERING, H. & WEISBERG, R. H. (eds.). Coastal ocean observing systems: advances and syntheses Cambridge: Academic Press, pp. 209-228, DOI: https://doi.org/10.1016/B978-0-12-802022-7.00012-2

» https://doi.org/10.1016/B978-0-12-802022-7.00012-2

FLORES-VIDAL, X., GONZALEZ-MONTES, S., ZERTU-CHECHANES, R., RODRGUEZ-PADILLA, I., MARTI, C. L., IMBERGER, J., MEJA-TREJO, A., DURAZO-ARVIZU, R. & NAVARRO-OLACHE, L. 2018. Three-dimensional exchange flows in a semi-enclosed Bay: numerical simulations and high-frequency radar observations. Estuarine, Coastal and Shelf Science, 210, 26-35, DOI: https://doi.org/10.1016/j.ecss.2018.05.027

» https://doi.org/10.1016/j.ecss.2018.05.027

GAN, J. & HO, H. S. 2007. Identification of spatial variability and eddies in the circulation of the South China Sea. Advances in Geosciences, 12, 243-26, DOI: https://doi.org/10.1142/9789812836168_0016

» https://doi.org/10.1142/9789812836168_0016

HAIMES, R. & KENWRIGHT, D. 1999. A99-33495 - On the velocity gradient tensor and fluid feature extraction Reston: American Institute of Aeronautics & Astronautics, DOI: https://doi.org/10.2514/6.1999-3288

» https://doi.org/10.2514/6.1999-3288

ISERN-FONTANET, J., BALLABRERA-POY, J., TURIEL, A. & GARCÍA LADONA, E. 2017. Remote sensing of ocean surface currents: a review of what is being observed and what is being assimilated. Nonlinear Processes in Geophysics, 24(4), 613-643, DOI: https://doi.org/10.5194/npg-24-613-2017

» https://doi.org/10.5194/npg-24-613-2017

ISERN-FONTANETA, J., FONTA, J., GARCIA-LADONAA, E., EMELIANOVA, M., MILLOTB, C. & TAUPIER-LETAGE, I. 2004. Spatial structure of anticyclonic eddies in the Algerian basin (Mediterranean Sea) analyzed using the Okubo-Weiss parameter. Deep Sea Research Part II: Tropical Studies in Oceanography, 51(25-26), 3009-3028, DOI: https://doi.org/10.1016/j.dsr2.2004.09.013

» https://doi.org/10.1016/j.dsr2.2004.09.013

KAWAI, H. 1985. Scale dependence of divergence and vorticity of near-surface flows in the sea. Journal of the Oceanographical Society of Japan, 41, 157-166, DOI: https://doi.org/10.1007/BF02111115

» https://doi.org/10.1007/BF02111115

KIM, S. Y. 2010. Observations of submesoscale eddies using high-frequency radar-derived kinematic and dynamic quantities. Continental Shelf Research, 30(15), 1639-1655, DOI: https://doi.org/10.1016/j.csr.2010.06.011

» https://doi.org/10.1016/j.csr.2010.06.011

KOLAR, V. & SISTEK, J. 2015. Corotational and compressibility aspects leading to a modification of the vortex-identification Q-Criterion. AIAA Journal, 53(8), 2406-2410, DOI: https://doi.org/10.2514/1.J053697

» https://doi.org/10.2514/1.J053697

LEVY, M., FRANKS, P. J. S. & SHAFER, K. 2018. The role of submesoscale currents in structuring marine ecosystems. Nature Communications, 9(1), 4758, DOI: https://doi.org/10.1038/s41467-018-07059-3

» https://doi.org/10.1038/s41467-018-07059-3

LIU, F., ZHOU, H., HUANG, W. & WEN, B. 2020. Submesoscale eddies observation using high-frequency radars: a case study in the northern south China Sea. IEEE Journal of Oceanic Engineering, 46(2), 624-633, DOI: http://doi.org/10.1109/JOE.2020.2986175

» http://doi.org/10.1109/JOE.2020.2986175

LUKOVICH, J. V. & SHEPHERD, T. G. 2005. Stirring and mixing in two-dimensional divergent flow. Journal of the Atmospheric Science, 62(11), 3933-3954, DOI: https://doi.org/10.1175/JAS3580.1

» https://doi.org/10.1175/JAS3580.1

MATHWORKS. 2006. Gradiant [online]. Portola Valley: MathWorks, Inc. Available at: https://www.mathworks.com/help/matlab/ref/gradient.html [Accessed: 2022 Mar 02].

» https://www.mathworks.com/help/matlab/ref/gradient.html

NAVARRO-OLACHE, L. F., CASTRO, R., DURAZO, R., HERNANDEZ-WALLS, R., MEJIA-TREJO, A., FLORESVIDAL, X. & FLORES-MORALES, A. L. 2021. Influence of Santa Ana winds on the surface circulation of Todos Santos Bay, Baja California, Mexico. Atmosfera, 43(1), 97-109, DOI: https://doi.org/10.20937/atm.52719

» https://doi.org/10.20937/atm.52719

PADUAN, J. D., KOSRO, P. M. & GLENN, S. M. 2004. A national coastal ocean surface current mapping system for the United States. Mar. Technology Society Journal, 38(2), 102-108, DOI: https://doi.org/10.4031/002533204787522839

» https://doi.org/10.4031/002533204787522839

PADUAN, J. D. & WASHBURN, L. 2013. High-frequency radar observations of ocean surface currents. Annual Review of Marine Science, 5, 115-136, DOI: https://doi.org/10.1146/annurev-marine-121211-172315

» https://doi.org/10.1146/annurev-marine-121211-172315

YANG, Q., PARVIN, B. & MARIANO, A. 2001. Detection of vortices and saddle points in SST data. Geophysical Research Letters, 28(2), 331-334, DOI: https://doi.org/10.1029/2000GL011408

» https://doi.org/10.1029/2000GL011408

ZATSEPIN, A., KUBRYAKOV, A., ALESKEROVA, A., ELKIN, D. & KUKLEVE, O. 2019. Physical mechanisms of submesoscale eddies generation: evidences from laboratory modeling and satellite data in the Black Sea. Ocean Dynamics, 69, 253-266, DOI: https://doi.org/10.1007/s10236-018-1239-4

» https://doi.org/10.1007/s10236-018-1239-4

ZHENG, Q., XIE, L., XIONG, X., HU, X. & CHEN, L. 2020. Progress in research of submesoscale processes in the South China Sea. Acta Oceanologica Sinica, 39, 1-13, DOI: https://doi.org/10.1007/s13131-019-1521-4

» https://doi.org/10.1007/s13131-019-1521-4

Downloads

Published

2022-12-05

How to Cite

Evidence of submesoscale coastal eddies inside Todos Santos Bay, Baja California, México. (2022). Ocean and Coastal Research, 70(Suppl. 1). https://doi.org/10.1590/