COVID-19 e o impacto de pacientes diabéticos e obesos durante o confinamento

Autores

DOI:

https://doi.org/10.11606/issn.2176-7262.rmrp.2023.195091

Palavras-chave:

Coronavírus, Distanciamento físico, Obesidade, Diabetes Mellitus

Resumo

Objetivo: Identificar os aspectos relacionados à obesidade e ao diabetes de acordo com os fatores clínicos, sociais e as dificuldades de condicionamento físico na rotina de confinamento durante a COVID-19. Métodos: Utilizaramse as bases de dados PubMed/MEDLINE, Web of Science, Scopus, LILACS, Embase e literatura cinza (Google Scholar). Foi utilizado o PRISMA, e, para análise de risco de viés, o checklist Downs and Black. Para sintetização dos resultados foram estabelecidos dois subtítulos com temas pertinentes ao objetivo da pesquisa. Resultados: Dezessete pesquisas foram incluídas para análise de síntese qualitativa: doze estudos de coorte, quatro de corte transversal e um estudo retrospectivo multicêntrico. Pacientes obesos e diabéticos aumentam as comorbidades quando infectados pela COVID-19, pois ocorre uma interação patológica comprometedora com complicações, como cetoacidose, infecção, hiperosmolaridade alta, dislipidemia e distúrbios psicológicos. Achados científicos apontam para uma maior internação de pessoas obesas em relação a diabéticos em Unidades de Terapia Intensiva (UTI), quando acometidos pelo novo coronavírus. Com a prática desportiva reduzida e a desmotivação advinda do comportamento sedentário, pessoas obesas e/ou diabéticas sugerem prognósticos desfavoráveis à saúde física e mental durante e após o término da pandemia. Conclusão: O entendimento específico sobre a abordagem imunomoduladora e de inibidores enzimáticos é de importância na atenção primária ao paciente. Estratégias com redes multidisciplinares devem acompanhar indivíduos com pré-disposição à obesidade e ao diabetes durante o confinamento social, uma vez que existe uma dificuldade de se manter um controle glicêmico e dislipidêmico que são desfavorecidos pela ansiedade, estresse e ideia de falência econômica.

Downloads

Os dados de download ainda não estão disponíveis.

Biografia do Autor

  • Iramar Baptistella do Nascimento, Universidade do Estado de Santa Catarina. Centro de Ciências da Saúde e do Esporte, Florianópolis, (SC), Brasil.

    Doutor. Docente

  • Erickson Zacharias Barboza , Universidade Castelo Branco, Centro de Realengo, Rio de Janeiro (RJ), Brasil.

    Fisioterapêuta

  • Raquel Fleig, Universidade do Estado de Santa Catarina. Centro do Planalto Norte, São Bento do Sul, (SC), Brasil.

    Mestre. Docente

Referências

Zhu N, Zhang D, Wang W,Xingwang LI MD, BoYang MS et al. A novel coronavirus from patients with pneumonia in China. N Engl J Med. 2020; 387(9):727-733. https://doi.org/10.1056/NEJMoa2001017 https://www.nejm.org/doi/full/10.1056/nejmoa2001017

Johns Hopkins University. Coronavirus COVID-19 Global Cases by Johns Hopkins CSSE [Internet]. Johns Hopkins University; 2020 https://gisanddata.maps.arcgis.com/apps/opsdashboard/index.html#/bda7594740fd40299423467b48e9ecf6

Read JM, Bridgen JRE, Cummings DAT, Ho A, Jewell CP. Novel coronavirus 2019-nCoV: early estimation of epidemiological parameters and epidemic predictions. medRxiv; 2020. https://www.medrxiv.org/CONTENT/10.1101/2020.01.23.20018549V2

World Health Organization. Pneumonia of unknown cause — China. January 5; 2020. https://www.who.int/csr/don/05-january-2020-pneumonia-of-unkown-cause-china/en/

Rothe C, Schunk M, Sothmann P, Bretzel G., Froeschl G, Wallraich C et al. Transmission of 2019-NCOV infection from an asymptomatic contact in Germany. N Engl J Med. 2020; 382(10):970-971. https://doi.org/10.1056/NEJMc2001468

https://www.nejm.org/doi/full/10.1056/NEJMc2001468

Callaway E, Cyranoski D. China coronavirus: six questions scientists are asking. Nature. 2020; 577(605-7.) https://www.nature.com/articles/d41586-020-00166-6

Das S, Anu K R, Birangal SR, Nikam AN, Pandey A, Mutalik S, et al. Role of comorbidities like diabetes on severe acute respiratory syndrome coronavirus-2: A review. Life Sci. 2020; 258:118202. https://doi.org/10.1016/j.lfs.2020.118202

https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7397991/

Cavenett. detection of Wuhan coronavirus 2019 by real-time RT-PCR. Geneva: World Health Organization, January 13; 2020;5. https://doi.org/10.1017/CBO9781107415324.004

Glende J, Schwegmann-Wessels C, Al-Falah M, Pfefferle S, Qu X, Deng H, et al. Importance of cholesterol-rich membrane microdomains in the interaction of the S protein of SARS-coronavirus with the cellular receptor angiotensin-converting enzyme 2. Virology. 2008; 381(2):215-221. https://doi.org/10.1016/j.virol.2008.08.026 https://pubmed.ncbi.nlm.nih.gov/18814896/

Ciavarella C, Motta I, Valente S, Pasquinelli G. Pharmacological (or synthetic) and nutritional agonists of PPAR-γ as candidates for cytokine storm modulation in COVID-19 disease. Molecules. 2020; 25(9):1-15. https://doi.org/10.3390/molecules25092076 https://pubmed.ncbi.nlm.nih.gov/32365556/

Barrasa H, Rello J, Tejada S, Martín A, Balziskueta G, Vinuesa C et al. SARS-CoV-2 in Spanish Intensive Care Units: Early experience with 15-day survival in Vitoria. Anaesth Crit Care Pain Med. 2020; 39(5):553-561. https://doi.org/10.1016/j.accpm.2020.04.001 http://pubmed.ncbi.nlm.nih.gov/32278670/

Kalligeros M, Shehadeh F, Mylona EK, et al. Association of Obesity with Disease Severity Among Patients with Coronavirus Disease 2019. Obesity. 2019; 28(7):1200-1204. https://doi.org/10.1002/oby.22859 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7267224/

Wiese OJ, Allwood BW, Zemlin AE. COVID-19 and the renin-angiotensin system (RAS): A spark that sets the forest alight? Med Hypotheses. 2020; 144(August):110231. https://doi.org/10.1016/j.mehy.2020.110231

https://pesquisa.bvsalud.org/global-literature-on-novel-coronavirus-2019-ncov/resource/en/covidwho-741425

Gallego P, Ruperti-repilado FJ, Schwerzmann M. Adults with congenital heart disease during the coronavirus disease 2019 (COVID-19) pandemic: are they at risk ? Revista. 2020; 73(10):795-798. https://doi.org/10.1016/j.rec.2020.06.016 https://www.revespcardiol.org/en-adults-with-congenital-heart-disease-articulo-S1885585720302814

Page MJ, Moher D, Bossuyt PM, et al. PRISMA 2020 explanation and elaboration: Updated guidance and exemplars for reporting systematic reviews. BMJ. 2021;372 (160):1-35. https://doi.org/10.1136/bmj.n160. https://pubmed.ncbi.nlm.nih.gov/33781993/

Santos CMCS, Pimenta CAM NM. A estratégia PICO para a construção da pergunta de pesquisa e busca de evidências. Latino-Am. 2007; 15(3):508-511. https://www.scielo.br/scielo.php?pid=s0104-11692007000300023&script=sci_abstract&tlng=pt

Downs SH, Black N. The feasibility of creating a checklist for theassessment of the methodological quality both of randomisedand non-randomised studies of health care interventions. J Epi-demiol Commun Heal. 1998; 52377-84.

https://scholar.google.com.br/scholar?hl=ptBR&as_sdt=0%2C5&as_vis=1&q=The+feasibility+of+creating+a+checklist+for+theassessment+of+the+methodological+quality+both+of+randomisedand+nonrandomised+studies+of+health+care+interventions.&btnG

Pecanha T, Goessler KF, Roschel H, Gualano B. Social isolation during the COVID-19 pandemic can increase physical inactivity and the global burden of cardiovascular disease. Am J Physiol Circ Physiol. 2020;318(6):H1441-H1446.

https://doi.org/10.1152/ajpheart.00268.2020

https://pubmed.ncbi.nlm.nih.gov/32412779/

Ferreira MS, Castiel LD, Cardoso MHC de A. A patologização do sedentarismo. Saude e Soc. 2012;21(4):836847. https://doi.org/10.1590/S0104-12902012000400004

https://www.scielo.br/j/sausoc/a/6Q55wRpd9mzzwXN9TqQFyXt/abstract/?lang=pt

Oliveros E, Somers VK, Sochor O, Goel K, Lopez-Jimenez F. The concept of normal weight obesity. Prog Cardiovasc Dis. 2014; 56(4):426-433. https://doi.org/10.1016/j.pcad.2013.10.003 https://pubmed.ncbi.nlm.nih.gov/24438734/

Luzi L, Radaelle MG. Influenza and obesity: its odd relationship and the lessonsfor COVID-19 pandemic.Acta Diabetol. 2020; 57(6):759-764.

https://doi.org/10.1007/s00592-020-01522-8 https://pubmed.ncbi.nlm.nih.gov/32249357/

Atkinson RL, Dhurandhar N, Davi A, Bowen RL, Israel BA, Albu JB et al. Human adenovirus-36 is associated with increased body weight and paradoxical reduction of serum lipids. Int J Obes. 2005; 29(9):281–286. https://www.nature.com/articles/0802830

Esposito K, Marfella R, Ciotola M, Palo C D, Giugliano F, Giugliano G et al. Effect of a Mediterranean-style diet on endothelial dysfunction and markers of vascular inflammation in the metabolic syndrome: a randomized trial. JAMA. 2004; 292:1440-1446. https://pubmed.ncbi.nlm.nih.gov/15383514/

Alberti KG, Zimmet P, Shaw J. Metabolic syndrome a new world-wide definition.A consensus statement from the lnternational Diabetes Federation. Diabet Med. 2006; 23(5):469-480.

https://www.researchgate.net/publication/7098699_Metabolic_syndrome-a_new_worldwide_definition_A_Consensus_Statement_from_the_International_Diabetes_Federation

Tang N, Li D, Wang X SZ. Abnormal coagulation parameters are associated with poor prognosis in patients with novel coronavirus pneumonia. J Thromb Haemost. 2020; 18(4):844-847. https://onlinelibrary.wiley.com/doi/full/10.1111/jth.14768

WHO. Coronavirus. [internet]. https://www.who.int/ health-topics/coronavirus#tab=tab_1. Published 2020. Acesso em 15 de maio 15, 2020.

Dantzer R., Cohen S, Russo SJ. Dinan TG. Resilience and immunity. Brain BehavImmun. 2018; 74:28 – 42. https://www.sciencedirect.com/science/article/pii/S0889159118304409

Nasi, M., Patrizi, G., Pizzi, C., Landolfo, M., Boriani, G., Dei Cas, A. et al. The role of physical activity in individuals with cardiovascular risk factors: an opinion paper from Italian Society of Cardiology-Emilia Romagna-Marche and SIC-Sport. J Cardiovasc. 2019; 20(10),:631–639. https://doi.org/10.1145/1390630.1390641 https://pubmed.ncbi.nlm.nih.gov/31436678/

Mattioli, A.V., Ballerini Puviani, M., Nasi, M., Farinetti, A. COVID-19 pandemic: the effects of quarantine on cardiovascular risk. Eur J Clin Nutr. 2020; 5:1-4. https://www.nature.com/articles/s41430-020-0646-z

Rahmati-Ahmadabad S, Hosseini F. Exercise against SARS-CoV-2 (COVID-19): Does workout intensity matter? (A mini review of some indirect evidence related to obesity). Obes Med. 2020; 19. doi:10.1016/j.obmed.2020.100245. https://pubmed.ncbi.nlm.nih.gov/32342019/

Sonza A, de Sá-Caputo D da C, Bachur JA, Araújo MGR, Trippo KV, Gama DRN et al. Brazil before and during covid-19 pandemic: Impact on the practice and habits of physical exercise. Acta Biomed. 2021;92(1):1-10. doi:10.23750/abm.v92i1.10803. https://pubmed.ncbi.nlm.nih.gov/33682804/

Bezerra ACV, Silva CEM, Soares FRG, Silva JAM. Factors associated with people’s behavior in social isolation during the covid-19 pandemic. Cienc e Saude Coletiva. 2020; 25:2411-2421. https://doi.org/10.1590/1413-81232020256.1.10792020 https://www.researchgate.net/publication/341950183_Factors_associated_with_people%27s_behavior_in_social_isolation_during_the_COVID-19_pandemic

Traversy G, Chaput JP. Alcohol consumption and obesity: an update. Curr Obes Rep. 2015; 4(1):1-41. https://doi.org/10.1007/s13679-014-0129-4 https://pubmed.ncbi.nlm.nih.gov/25741455/

Hagerty SL, Williams LM. The impact of COVID-19 on mental health: The interactive roles of brain biotypes and human connection. Brain, Behav Immun - Heal. 2020; 5:100078. https://doi.org/10.1016/j.bbih.2020.100078 https://www.sciencedirect.com/science/article/pii/S2666354620300430

Atlantis E, Goldney RD, Wittert GA. Obesity and depression or anxiety. BMJ (Clinical Res ed). 2009; 339:b3868. https://www.bmj.com/content/339/bmj.b3868

Guzik TJ, Mohiddin SA, Dimarco A, Patel V, Savvatis K, Marelli-Berg FM et al. COVID-19 and the cardiovascular system: implications for risk assessment,diagnosis, and treatment options. Cardiovasc Res. 2020;(April), cvaa106. https://academic.oup.com/cardiovascres/article/116/10/1666/5826160

Nascimento IB, Fleig R. Mobility impact and methods of diaphragm monitoring in patients with chronic obstructive pulmonary disease: A systematic review. Clinics. 2020; 75:1-11. https://doi.org/10.6061/clinics/2020/e1428 https://www.scielo.br/scielo.php?pid=S180759322020000100401&script=sci_abstract&tlng=en

Zhu Z, Hasegawa K, Ma B, Fujiogi M, Camargo CA, Liang L. Association of obesity and its genetic predisposition with the risk of severe COVID-19: Analysis of population-based cohort data. Metabolism. 2020; 112:154345. https://doi.org/10.1016/j.metabol.2020.154345

Who. World Health Organization. WHO technical report series 894. Obesity: preventing and managing the global epidemic. 2000:2000. https://www.who.int/nutrition/publications/obesity/WHO_TRS_894/en/

Simonnet A, Chetboun M, Poissy J, Raverdy V, Noulette J, Duhamel A et al. High prevalence of obesity in Severe Acute Respiratory Syndrome Coronavirus-2 (SARS-CoV-2) requiring invasive mechanical ventilation. Obes SilverSpring. 2020; 8(7):1195-1199.

Wu Z. MJM. Characteristics of and Important Lessons From the Coronavirus Disease 2019 (COVID-19) Outbreak in China: Summary of a Report of 72 314 Cases From the Chinese Center for Disease Control and Prevention. JAMA. 2020; 323(5):1239–1242. https://doi.org/10.1001/jama.2020.2648 https://pubmed.ncbi.nlm.nih.gov/32091533/

Guo W, Li M, Dong Y, Zhou H, Zhang Z, Tian C et al. Diabetes is a risk factor for the progression and prognosis of COVID-19. Diabetes Metab Res Rev. 2020; e3319. https://doi.org/10.1002/dmrr.3319 https://pubmed.ncbi.nlm.nih.gov/32233013/

Sales-Peres SHC, de Azevedo-Silva LJ, Bonato RCS, Sales-Peres M C, Pinto ACS, Santiago JJF. Coronavirus (SARS-CoV-2) and the risk of obesity for critically illness and ICU admitted: Meta-analysis of the epidemiological evidence. Obes Res Clin Pract. 2020;14(5): 389–397. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7396969/

Singh AK, Gupta R, Ghosh A MA. Diabetes in COVID-19: prevalence, pathophysiology, prognosis and practical considerations. Diabetes Metab Syndr. 2020;14(4):303e10. https://www.sciencedirect.com/science/article/abs/pii/S1871402120300631

Preito-Alhambra D, Ballo E, Coma E, Mora N, Aragon M, PratsUribe A et al. Hospitalization and 30-day fatality in 121,263 COVID-19 outpatient cases. BMJ. 2020. https://doi.org/10.1101/2020.05.04.20090050 https://www.medrxiv.org/content/10.1101/2020.05.04.20090050v1

Zhu L, She ZG, Cheng X, Qin JJ, Zhang XJ, Cai J et al. Association of blood glucose control and outcomes in patients with COVID-19 and pre-existing type 2 diabetes. Cell Metab.2020; 31(6):1068e77. e3 https://www.sciencedirect.com/science/article/pii/S1550413120302382

Ma R, Holt R. COVID-19 and diabetes. Diabet Med. 2020; https://onlinelibrary.wiley.com/doi/full/10.1111/dme.14300

Vickers C, Hales P, Kaushik V, Dick L, Gavin J, Godbout K et al. Hydrolysis of biological peptides by human angiotensin-converting enzyme-related carboxypeptidase. J Biol Chem. 2002; 277:14838 – 14843. https://doi.org/10.1074/jbc.M200581200 https://pubmed.ncbi.nlm.nih.gov/11815627/

Verdecchia P, Angeli F,Mazzotta G, Reboldi G. Angiotensin converting enzyme inhibitors and angiotensin receptor blockers in the treatment of hypertension: should they be used together. Curr Vasc Pharmacol. 2010; 8:742 – 6. https://europepmc.org/article/med/20626343

Xu X , Chen P, Wang J, Feng J, Zhou H, Li Xuan et al. Evolution of the novel coronavirus from the ongoing Wuhan outbreak and modeling of its spike protein for risk of human transmission. Life Sci. 2020; 63(3):457-460. https://doi.org/10.1007/s11427-020-1637-5 https://link.springer.com/article/10.1007/s11427-020-1637-5

Hamming I, Timens W, Bulthuis MLC, Lely AT, Navis GJ van GH. Tissue distribution of ACE2 protein, the functional receptor for SARS coronavirus: a first step in understanding SARS pathogenesis. J Pathol. 2004; 203(2): 631–637. http://eprints.uanl.mx/5481/1/1020149995

Chen M, Shen W, Rowan NR, Kulaga H, Hillel A, Ramanathan Jr et al. Elevated ACE2 expression in the olfactory neuroepithelium: implications for anosmia and upper respiratory SARS-CoV-2 entry and replication. bioRxiv. 2020; 56: 2001948. https://doi.org/10.1101/2020.05.08.084996 https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7263519/

Gupta R, Misra A. Contentious issues and evolving concepts in the clinical presentation and management of patients with COVID-19 infection with reference to use of therapeutic and other drugs used in Co-morbid diseases (Hypertension, diabetes etc). Diabetes Metab Syndr. 2020;14(3):251-254. https://pubmed.ncbi.nlm.nih.gov/32247213/

Goyal A, Gupta S GY. Proposed guidelines for screening o hyperglycemia in patients hospitalized with COVID-19 in low resource settings. Diabetes Metab Syndr. 2020;14(5):753-756. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7258830/

Jayawardena R, Sooriyaarachchi P, Chourdakis M, Jeewandara C RP. Ranasinghe P. Enhancing immunity in viral infections, with special emphasis on COVID-19:a revew. Diabetes Metab Syndr. 2020;14(4):367e82. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7161532/

Reddy PK, Kuchay MS, Mehta Y MS. Diabetic ketoacidosis precipitated by COVID-19: a report of two cases and review of literature. Diabetes Metab. 2020;14(5):1459e62. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7395228/

Ghosh A, Arora B, Gupta R, Anoop S MA. Effects of nationwide lockdown during COVID-19 epidemic on lifestyle and other medical issues of patients with type 2 diabetes in north India. Diabetes Metab Syndr. 2020;14(5):917e20. https://www.ncbi.nlm.nih.gov/pmc/articles/PMC7265851/

Khare J, Sushil J. Observational study on effect of lock down due to COVID 19 on glycemic control in patients with diabetes: experience from Central India. Diabetes Metab Syndr.2020 Nov-Dec;14(6)1571e. https://www.sciencedirect.com/science/article/pii/S1871402120303155

Khader MA, Jabeen T NR. A cross sectional study reveals severe disruption in glycemic control in people with diabetes during and after lockdown in India. Diabetes Metab Syndr. 2020; 14(6):1579-1584. https://doi.org/10.1016/j.dsx.2020.08.011 https://pubmed.ncbi.nlm.nih.gov/32858476/

Fernández E, Cortazar A, Bellido V. Impact of COVID-19 lockdown on glycemic control in patients with type 1 diabetes. Diabetes Res Clin Pr. 2020;166:108348. https://www.diabetesresearchclinicalpractice.com/article/S0168-8227(20)30600-8/fulltext

Tornese G, Ceconi V, Monasta L, Carletti C, Faleschini E BE. Glycemic control in type 1 diabetes mellitus during COVID-19 quarantine and the role of in-home physical activity. Diabetes Technol Ther. 2020;22(6):462e7. https://doi.org/10.1089/dia.2020.0169 https://www.liebertpub.com/doi/10.1089/dia.2020.0169

Dover AR, Ritchie SA, McKnight JA, Strachan MWJ, Zammitt NN, Wake D et al. Assessment of the effect of the COVID-19 lockdown on glycaemic control in people with type 1 diabetes using. Diabet Med. 2020; 2(2):10.1111. https://doi.org/10.1111/dme.14374 https://onlinelibrary.wiley.com/doi/10.1111/dme.14374

Bambra C, Riordan R, Ford J, Matthews F. The COVID-19 pandemic and healthinequalities. J Epidemiol Community Health. 2020; 74(11): 964-968

https://doi.org/10.1136/jech-2020-214401 https://jech.bmj.com/content/74/11/964

Publicado

2023-08-15

Edição

Seção

Artigo de Revisão

Como Citar

1.
Nascimento IB do, Barboza EZ, Fleig R. COVID-19 e o impacto de pacientes diabéticos e obesos durante o confinamento. Medicina (Ribeirão Preto) [Internet]. 15º de agosto de 2023 [citado 8º de maio de 2024];56(2):e-195091. Disponível em: https://www.revistas.usp.br/rmrp/article/view/195091