Fermentation dynamics, nutritional quality, and heating capacity of mixed silages of elephant grass (Pennisetum purpureum Schum) and Leucaena (Leucaena leucocephala)





Dry matter, Effluent losses, Fermentation, Forage conservation, Semiarid


Leucaena has been used to make mixed silages to obtain nutritional enrichment of the silages. Thus, the inclusion of Leucaena as an additive in mixed elephant grass silages can reduce fermentation losses, and increase the nutritional value and aerobic stability of the mixed silage without changing the fermentation profile. This study evaluated the fermentation profile, nutritional composition, and aerobic stability of elephant grass silages combined with different levels of Leucaena. A total of five inclusion levels of Leucaena (0, 20, 40, 60, and 80% on a dry matter basis) were added to elephant grass silages. A completely randomized design was adopted, with 5 treatments and 3 repetitions, totaling 15 experimental silos that were opened after 30 days of sealing. Fermentation profile, chemical composition, and aerobic stability were analyzed. A descriptive analysis of temperature and pH peaks during aerobic stability was performed. The increase in the inclusion of Leucaena in the composition of silages reduced gas and effluent losses, neutral and acid detergent fiber, cellulose, lignin, total and fiber carbohydrates, and total digestible nutrients, and resulted in increased dry matter, ether extract, and crude protein. A quadratic effect of treatments was found for the temperature to reach the maximum pH (P=0.009). Aerobic stability remained constant after 40% Leucaena inclusion in the composition of elephant grass silages. The inclusion of Leucaena up to 80% in the composition of elephant grass silages reduces fermentation losses, promotes a nutritional increase, and increases the aerobic stability of the silages.


Download data is not yet available.


American Oil Official Method Chemists’ Society – AOCS. Official methods and recommended practices. 7th ed. Urbana: AOCS; 2017.

Amorim DS, Edvan RL, Nascimento RR, Bezerra LR, Araújo MJ, Silva AL, Mielezrski F, Nascimento KS. Fermentation profile and nutritional value of sesame silage compared to usual silages. Ital J Anim Sci. 2020;19(1):230-9. http://dx.doi.org/10.1080/1828051X.2020.1724523.

Andrade WR, Moura MMA, Rocha VR Jr, Costa RF, Santos LHT, Silva MM. Quality of sorghum silage with leucaena. Acta Sci Anim Sci. 2018;41(1):e36493. http://dx.doi.org/10.4025/actascianimsci.v41i1.36493.

Araújo CA, Santos APM, Monteiro CCF, Lima DO, Torres AM, Santos CVS, Silva JJ. Effect of silage time on chemical composition, fermentative profile and aerobic stability of corn silages (Zea mays). Div J. 2020;5(1):547-61. http://dx.doi.org/10.17648/diversitas-journal-v5i1-1035.

Association of Official Analytical Chemists – AOAC. Official methods of analysis. 20th ed. Gaithersburg: AOAC International; 2016.

Borreani G, Tabacco E, Schmidt RJ, Holmes BJ, Muck RE. Silage review: factors affecting dry matter and quality losses in silages. J Dairy Sci. 2018;101(5):3952-79. http://dx.doi.org/10.3168/jds.2017-13837. PMid:29685272.

Costa DM, Carvalho BF, Bernardes TF, Schwan RF, Ávila CLS. New epiphytic strains of lactic acid bacteria improve the conservation of corn silage harvested at late maturity. Anim Feed Sci Technol. 2021;274(1):114852. http://dx.doi.org/10.1016/j.anifeedsci.2021.114852.

Drouin P, Tremblay J, Renaud J, Apper E. Microbiota succession during aerobic stability of maize silage inoculated with Lentilactobacillus buchneri NCIMB 40788 and Lentilactobacillus hilgardii CNCM-I-4785. MicrobiologyOpen. 2021;10(1):e1153. http://dx.doi.org/10.1002/mbo3.1153. PMid:33369186.

Gandra JR, Oliveira ER, Gandra ERS, Takiya CS, Goes RHTB, Oliveira KMP, Silveira KA, Araki HMC, Orbach ND, Vasquez DN. Inoculation of Lactobacillus buchneri alone or with Bacillus subtilis and total losses, aerobic stability, and microbiological quality of sunflower silage. J Appl Anim Res. 2017;45(1):609-14. http://dx.doi.org/10.1080/09712119.2016.1249874.

Garcez AF No, Santos TM, Silva J, Fernandes SR. Effect of whey permeate and Lactobacillus buchneri on biomass conservation, chemical characteristics and aerobic stability of elephant grass silage. Waste Bio Val. 2021;12(2):879-93. http://dx.doi.org/10.1007/s12649-020-01035-z.

Gayer TO, Kasper NF, Tadielo LE, Krolow RH, Azevedo EB, Oaigen RP, Castagnara DD. Different dry matters content used for the conservation of annual ryegrass (Lolium multiflorum Lam.) in anaerobic environment. Afr J Agric Res. 2019;14(6):369-78. http://dx.doi.org/10.5897/AJAR2018.13675.

Hall MB. Challenges with non-fiber carbohydrate methods. J Anim Sci. 2003;81(12):3226-32. http://dx.doi.org/10.2527/2003.81123226x. PMid:14677880.

Harlan DW, Holter JB, Hayes HH. Detergent fiber traits to predict productive energy of forages fed free choice to non lacting dairy cattle. J Dairy Sci. 1991;74(4):1337-53. http://dx.doi.org/10.3168/jds.S0022-0302(91)78289-1. PMid:1650381.

Heinrichs J, Kononoff P. Evaluating particle size of forages and TMRs using the new Penn State Forage Particle Separator [Internet]. Pennsylvania: Pennsylvania State University, College of Agricultural Sciences, Cooperative Extension DAS; 2013 [cited 2021 Aug 11]. Available from: http://storti.com/documenti/doc_app/evaluating-particlesize-of-forages.pdf.

Kim D, Lee KD, Choi KC. Role of LAB in silage fermentation: effect on nutritional quality and organic acid production: an overview. AIMS Agric. Food. 2021;6(1):216-34. http://dx.doi.org/10.3934/agrfood.2021014.

König W, Lamminen M, Weiss K, Tuomivirta TT, Muñoz SS, Fritze H, Elo K, Puhakka L, Vanhatalo A, Jaakkola S. The effect of additives on the quality of white lupin-wheat silage assessed by fermentation pattern and qPCR quantification of clostridia. Grass Forr Sci. 2017;72(4):757-71. http://dx.doi.org/10.1111/gfs.12276.

Köppen W, Geiger R. Klimate der Erde. Gotha: Verlag Justus Perthes; 1928. Wall-map 150 cm × 200 cm.

Li D, Ni K, Zhang Y, Lin Y, Yang F. Fermentation characteristics, chemical composition and microbial community of tropical forage silage under different temperatures. Asian-Australas J Anim Sci. 2019;32(5):665-74. http://dx.doi.org/10.5713/ajas.18.0085. PMid:30056673.

McDonald P, Henderson AR, Heron SJE. The biochemistry of silage. Marlow, UK: Chalcomb Publications; 1991.

Muck RE, Nadeau EMG, Mcallister TA, Contreras Govea FE, Santos MC, Kung L Jr. Silage review: recent advances and future uses of silage additives. J Dairy Sci. 2018;101(5):3980-4000. http://dx.doi.org/10.3168/jds.2017-13839. PMid:29685273.

Ramos BLP, Pires AJV, Cruz NT, Santos APS, Nascimento LMG, Santos HP, Amorim JMS. Perdas no processo de ensilagem: uma breve revisão. Res Soc Dev. 2021;10(5):e8910514660. http://dx.doi.org/10.33448/rsd-v10i5.14660.

Richard TL, Veeken AH, Wilde V, Hamelers HVM. Air‐filled porosity and permeability relationships during solid‐state fermentation. Biotechnol Prog. 2004;20(5):1372-81. http://dx.doi.org/10.1021/bp0499505. PMid:15458320.

Rodrigues WM, Sales ECJ, Monção FP, Marques OFC, Rigueira JPS, Assis Pires DA, Gomes VM. pH, gas losses, effluents and nutritional valueof millet silages [Pennisetum glaucum (L.) R. Br.] with different levels of leucaena (Leucaena Leucocephala (Lam.) de Wit) in semiarid. Braz J Dev. 2020;6(4):22001-16. http://dx.doi.org/10.34117/bjdv6n4-389.

Silva DJ, Queiroz AC. Análise de alimentos: métodos químicos e biológicos. 2a ed. Viçosa: Editora UFV; 2002.

Sniffen CJ, O’Connor JD, van Soest PJ, Fox DG, Russell JB. A net carbohydrate and protein system for evaluating cattle diets: II. Carbohydrate and protein availability. J Anim Sci. 1992;70(11):3562-77. http://dx.doi.org/10.2527/1992.70113562x. PMid:1459919.

Tao X, Ji C, Chen S, Zhao J, Wang S, Li J, Sun F, Shao T. Fermentation quality and aerobic stability of Napier grass ensiled with citric acid residue and lactic acid bacteria. Trop Grassl-Forrajes Trop. 2021;9(1):52-9. http://dx.doi.org/10.17138/tgft(9)52-59.

van Soest PJ. Nutritional ecology of the ruminant. 2nd ed. Ithaca: Cornell University Press; 1994. http://dx.doi.org/10.7591/9781501732355.

Vu VH, Li X, Wang M, Liu R, Zhang G, Liu W, Xia B, Sun Q. Dynamics of fungal community during silage fermentation of elephant grass (Pennisetum purpureum) produced in northern Vietnam. Asian-Australas J Anim Sci. 2019;32(7):996-1006. http://dx.doi.org/10.5713/ajas.18.0708. PMid:30744340.

Weirich DT, Neres MA, Hunoff CA, Ströher SM, Nath CD, Sunahara SMM, Sarto JRW, Oldoni T. Microbiological profile and aerobic stability of Tifton 85 bermudagrass silage with or without vacuum and microbial inoculants. Biosci J. 2018;34(1):151-61. http://dx.doi.org/10.14393/BJ-v34n1a2018-33628.

Wilkinson JM, Davies DR. The aerobic stability of silage: key findings and recent developments. Grass Forr Sci. 2012;68(1):1-19. http://dx.doi.org/10.1111/j.1365-2494.2012.00891.x.

Williams AG. The permeability and porosity of grass silage as affected by dry matter. J Agric Eng Res. 1994;59(2):133- 40. http://dx.doi.org/10.1006/jaer.1994.1070.

Williams SD, Shinners KJ. Farm-scale anaerobic storage and aerobic stability of high dry matter sorghum as a biomass feedstock. Biom Bioen. 2012;46(1):309-16. http://dx.doi.org/10.1016/j.biombioe.2012.08.010.

Zhang YC, Li DX, Wang XK, Lin YL, Zhang Q, Chen XY, Yang FY. Fermentation dynamics and diversity of bacterial community in four typical woody forages. Ann Mic. 2019;69(3):233-40. http://dx.doi.org/10.1007/s13213-018-1398-z.







Funding data

How to Cite

Araújo JS de, Araújo C de A, Macedo A de, Silva C de S, Novaes JJ da S, Lima D de O, et al. Fermentation dynamics, nutritional quality, and heating capacity of mixed silages of elephant grass (Pennisetum purpureum Schum) and Leucaena (Leucaena leucocephala). Braz. J. Vet. Res. Anim. Sci. [Internet]. 2022 Sep. 16 [cited 2024 Jun. 14];59:e189466. Available from: https://www.revistas.usp.br/bjvras/article/view/189466