Ocular biometry of snakes of the species Python bivittatus kept in captivity

Authors

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2023.213344

Keywords:

Ophthalmology, Ultrasound, Diagnostic imaging

Abstract

During embryological development, the eyelids of snakes fuse and no longer open like in mammals. They become transparent, thus forming spectacles, a transparent structure that covers the eyes. The primary function of these spectacles is to provide a physical barrier to protect the eyes without eyelids. This study aimed to evaluate the ocular biometry of Python bivittatus snakes. Ocular ultrasound examinations were performed on four individuals using the Logic E ultrasound device (GE, United States) with a 10-22 MHz linear probe. Conduction gel was used to make transducer contact with the cornea in these snakes. Images were obtained to evaluate the following measurements: axial length of the eyeball, anterior chamber depth, lens thickness, and vitreous depth. These measurements of intraocular structures were, respectively: 0.05 ± 0.02 cm for corneal thickness in the right eye and 0.04 ± 0.007 cm in the left eye; 0.11 ± 0.04 cm for anterior chamber depth in the right and left eyes; 0.36 ± 0.07 cm for the lens thickness in the right eye and 0.39 ± 0.05 cm in the left eye; 0.35 ± 0.05 for the depth of the vitreous chamber in the right eye and 0.31 ± 0.02 cm in the left eye; and 0.85 ± 0.18 cm for the length of the globe in the axial plane in the right eye and 0.85 ± 0.14 cm in the left eye. Knowledge of snakes’ anatomical and ophthalmological parameters is scarce, and the incidence of eye diseases is still little known, making further studies necessary.

Downloads

Download data is not yet available.

References

Caprette CL, Lee MSY, Shine R, Mokany A, Downhower JF. The origin of snakes (Serpentes) as seen through eye anatomy. Biol J Linn Soc Lond. 2004;81(4):469-82. https://doi.org/10.1111/j.1095-8312.2003.00305.x.

Duke-Elder S. Systems of ophthalmology. Vol. 1. London: Henry Kimpton; 1958. The eyes of reptiles; p. 353-95.

Gonzalez EM, Rodriguez A, Garcia I. Review of ocular ultrasonography. Vet Radiol Ultrasound. 2001;42(6):485-95. https://doi.org/10.1111/j.1740-8261.2001.tb00975.x. PMid:11768514.

Gumpenberger M, Kolm G. Ultrasonographic and computed tomographic examinations of the avian eye: physiologic appearance, pathologic findings, and comparative biometric measurement. Vet Radiol Ultrasound. 2006;47(5):492-502. https://doi.org/10.1111/j.1740-8261.2006.00168.x. PMid:17009515.

Hernández-Guerra AM, Rodilla V, Lopez-Murcia MM. Ocular biometry in the adult anesthetized ferret (Mustela putorius furo). Vet Ophthalmol. 2007;10(1):50-2. https://doi.org/10.1111/j.1463-5224.2007.00500.x. PMid:17204128.

Hollingsworth SR, Holmberg BJ, Strunk A, Oakley AD, Sickafoose LM, Kass PH. Comparison of ophthalmic measurements obtained via high-frequency ultrasound imaging in four species of snakes. Am J Vet Res. 2007;68(10):1111-4. https://doi.org/10.2460/ajvr.68.10.1111. PMid:17916019.

Lauridsen H, Da Silva MA, Hansen K, Jensen HM, Warming M, Wang T, Pedersen M. Ultrasound imaging of the anterior section of the eye of five different snake species. BMC Vet Res. 2014;10(1):313. https://doi.org/10.1186/s12917-014-0313-5. PMid:25547871.

Lawton MPC. Reptilian Ophthalmology. In: Mader DR, editor. Reptile medicine and surgery. 2nd ed. Missouri: Elsevier; 2006. p. 323-42. https://doi.org/10.1016/B0-72-169327-X/50024-9.

Lehmkuhl RC, Almeida MF, Mamprim MJ, Vulcano LC. B-mode ultrasonography biometry of the Amazon Parrot (Amazona aestiva) eye. Vet Ophthalmol. 2010;13(Suppl):26-8. https://doi.org/10.1111/j.1463-5224.2010.00797.x. PMid:20840087.

Martin de Bustamante MG, Johnson AN, Shippy SG, Allgood H, Plummer CE. Ophthalmic examination, biometry, and histologic findings in captive inland bearded dragons (Pogona vitticeps). Vet Ophthalmol. 2020;23(4):696-706. https://doi.org/10.1111/vop.12779. PMid:32459050.

Muramoto C, Cardoso-Brito V, Raposo AC, Pires TT, Oriá AP. Ocular ultrasonography of sea turtles. Acta Vet Scand. 2020;62:52. https://doi.org/10.1186/s13028-020-00551-1.

Penninck D, Daniel GB, Brawer R, Tidwell AS. Cross-sectional imaging techniques in veterinary ophthalmology. Clin Tech Small Anim Pract. 2001;16(1):22-39. https://doi.org/10.1053/svms.2001.22802. PMid:11373826.

Rainwater TR, Millichamp NJ, Barrantes LD, Barr BR, Montero JR, Platt SG, Abel MT, Cobb GP, Anderson TA. Ocular disease in American crocodiles (Crocodylus acutus) in Costa Rica. J Wildl Dis. 2011;47(2):415-26. PMid:21441195.

Ruiz T, Campos WN, Peres TP, Gonçalves GF, Ferraz RH, Néspoli PE, Sousa VR, Ribeiro AP. Intraocular pressure, ultrasonographic and echobiometric findings of juvenile Yacare caiman (Caiman yacare) eye. Vet Ophthalmol. 2015;18(Suppl 1):40-5. https://doi.org/10.1111/vop.12146. PMid:24450942.

Schwartz-Karsten H. Über Entwicklung und Bau der Brille bei Ophidiern und Lacertiliern und die Anatomie ihrer Tränenwege. Morph Jahrb. 1933;72:499–540.

Silva MA, Heegaard S, Wang T, Nyengaard JR, Bertelsen MF. The spectacle of the ball python (Python regius). J Morphol. 2014;275(5):489-96. https://doi.org/10.1002/jmor.20230. PMid:24375578.

Squarzoni R, Perlmann E, Antunes A, Milanelo L, de Moraes Barros PS. Ultrasonographic aspects and biometry of Striped owl’s eyes (Rhinoptynx clamator). Vet Ophthalmol. 2010;13(Suppl):86-90. https://doi.org/10.1111/j.1463-5224.2010.00819.x. PMid:20840095.

Walls GL. Ophthalmological implications for the early history of snakes. Copeia. 1940;(1):1-8. https://doi.org/10.2307/1439015.

Walls GL. The significance of the reptilian ‘spectacle’. Am J Ophthalmol. 1934;17(11):1045-7. https://doi.org/10.1016/S0002-9394(34)90319-6.

Downloads

Published

2023-12-12

How to Cite

Agostinho, I. C. C., Martins, J. A., Balbueno, M. C. S., Coelho, C. de P., & Martins Júnior, R. (2023). Ocular biometry of snakes of the species Python bivittatus kept in captivity. Brazilian Journal of Veterinary Research and Animal Science, 60, e213344. https://doi.org/10.11606/issn.1678-4456.bjvras.2023.213344

Issue

Section

FULL ARTICLE