Errata: Os efeitos in vitro dos ácidos graxos n-3 na regulação da resposta imune de explantes endometriais bovinos ex vivo

Autores

DOI:

https://doi.org/10.11606/issn.1678-4456.bjvras.2023.214210

Palavras-chave:

Citocinas, Ácidos graxos, Reprodução, Útero

Resumo

Os ácidos graxos são considerados intermediários metabólicos, embora novos fatos indiquem que eles também atuem como moléculas sinalizadoras com diferentes papéis na resposta imune. Dessa forma, este estudo investigou os efeitos anti-inflamatórios de ácidos graxos poliinsaturados n-3 (PUFAs) como ácido eicosapentaenóico (EPA), ácido docosahexaenóico (DHA) e ácido α-linolênico (LNA) em explantes endometriais ex vivo de bovinos. Para tal, o experimento foi divido em dois grupos: (1) Desafiado-LPS e (2) Controle, para que então pudesse avaliar o acúmulo de citocinas pró-inflamatórias como interleucina 1β (IL1B) e interleucina 6 (IL6). Foram selecionados tratos reprodutivos de fêmeas bovinas de novilhas Angus não prenhes sem evidência de doenças reprodutivas. Explantes endometriais foram processados e tratados por 24h com EPA, DHA e LNA em cinco concentrações diferentes (0μM, 50μM, 100 μM, 200μM e 400 μM) e, em seguida, desafiados com LPS por mais 24h. Os sobrenadantes foram colhidos para avaliar a concentração de IL1B e IL6 pelo teste de ELISA. Os explantes tratados com EPA dos grupos de controle reduziram as concentrações de ILB (200 μM) e IL6 (400 μM) e no grupo desafiado com LPS houve redução das concentrações de IL6 (50 μM; 100 μM). Nos explantes do grupo desafiado com LPS, o DHA diminuiu o acúmulo de IL1B e IL6 nas concentrações de 200 μM, e no grupo controle reduziu IL6 nas concentrações de 200 μM, enquanto os explantes tratados com LNA reduziram apenas o acúmulo de IL1B a 400 μM (de ambos os grupos). Em conclusão, o ácido EPA provou ser a melhor opção anti-inflamatória para diminuir a concentração de ambas as citocinas pró-inflamatórias (IL1B e IL6) de grupos desafiados com LPS e controle em explantes endometriais bovinos; enquanto o LNA evidencia ser a opção menos viável para promover uma resposta anti-inflamatória.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Albiger B, Dahlberg S, Normark S. Role of the innate immune system in host defence against bacterial infections : focus on the Toll-like receptors. J Intern Med. 2007;261(6):511- 28. http://dx.doi.org/10.1111/j.1365-2796.2007.01821.x. PMid:17547708.

Bionaz M, Vargas-Bello-Pérez E, Busato S. Advances in fatty acids nutrition in dairy cows: from gut to cells and effects on performance. J Anim Sci Biotechnol. 2020;11(1):110. http://dx.doi.org/10.1186/s40104-020-00512-8. PMid:33292523.

Borges ÁM, Healey GD, Sheldon IM. Explants of intact endometrium to model bovine innate immunity and inflammation ex vivo. Am J Reprod Immunol. 2012;67(6):526- 39. http://dx.doi.org/10.1111/j.1600-0897.2012.01106.x. PMid:22324889.

Calder PC. Polyunsaturated fatty acids and inflammation. Prostaglandins Leukot Essent Fatty Acids. 2006;75(3):197-202. http://dx.doi.org/10.1016/j.plefa.2006.05.012. PMid:16828270.

Caughey GE, Mantzioris E, Gibson RA, Cleland LG, James MJ. The effect on human tumor necrosis factor α and interleukin 1β production of diets enriched in n-3 fatty acids from vegetable oil or fish oil. Am J Clin Nutr. 1996;63(1):116-22. http://dx.doi.org/10.1093/ajcn/63.1.116. PMid:8604658.

Chapwanya A, Meade KG, Doherty ML, Callanan JJ, Mee JF, Farrelly CO. Histopathological and molecular evaluation of Holstein-Friesian cows postpartum: toward an improved understanding of uterine innate immunity. Theriogenology. 2009;71(9):1396-407. http://dx.doi.org/10.1016/j.theriogenology.2009.01.006. PMid:19233457.

Chen C, Guan W, Xie Q, Chen G, He X, Zhang H, Guo W, Chen F, Tan Y, Pan Q. n-3 essential fatty acids in Nile tilapia, Oreochromis niloticus: bioconverting LNA to DHA is relatively efficient and the LC-PUFA biosynthetic pathway is substrate limited in juvenile fish. Aquaculture. 2018;495:513- 22. http://dx.doi.org/10.1016/j.aquaculture.2018.06.023.

Collins T, Read MA, Neish AS, Whitley MZ, Thanos D, Maniatis T. Transcriptional regulation of endothelial cell adhesion molecules: NF‐κB and cytokine‐inducible enhancers. FASEB J. 1995;9(10):899-909. http://dx.doi.org/10.1096/fasebj.9.10.7542214. PMid:7542214.

Dirandeh E, Ghaffari J. Effects of feeding a source of omega-3 fatty acid during the early postpartum period on the endocannabinoid system in the bovine endometrium. Theriogenology. 2018;121:141-6. http://dx.doi.org/10.1016/j.theriogenology.2018.07.043. PMid:30145543.

Fritsche KL. Too much linoleic acid promotes inflammationdoesn’t it? Prostaglandins Leukot Essent Fatty Acids. 2008;79(3– 5):173-5. http://dx.doi.org/10.1016/j.plefa.2008.09.019. PMid:18990555.

Gorjão R, Verlengia R, de Lima TM, Soriano FG, Boaventura MFC, Kanunfre CC, Peres CM, Sampaio SC, Otton R, Folador A, Martins EF, Curi TCP, Portiolli ÉP, Newsholme P, Curi R. Effect of docosahexaenoic acid-rich fish oil supplementation on human leukocyte function. Clin Nutr. 2006;25(6):923-38. http://dx.doi.org/10.1016/j.clnu.2006.03.004. PMid:16697494.

Haag M. Essential fatty acids and the brain. Can J Psychiatry. 2003;48(3):195-203. http://dx.doi.org/10.1177/070674370304800308. PMid:12728744.

He X, Liu W, Shi M, Yang Z, Zhang X, Gong P. Docosahexaenoic acid attenuates LPS-stimulated inflammatory response by regulating the PPARγ/NF-κB pathways in primary bovine mammary epithelial cells. Res Vet Sci. 2017;112:7-12. http://dx.doi.org/10.1016/j.rvsc.2016.12.011. PMid:28095338.

Ireland JJ, Coulson PB, Murphree RL. Follicular development during four stages of the estrous cycle of beef cattle. J Anim Sci. 1979;49(5):1261-9. http://dx.doi.org/10.2527/jas1979.4951261x. PMid:575533.

Kelley DS, Taylor PC, Nelson GJ, Schmidt PC, Ferretti A, Erickson KL, Ranjit K, Mackey BE. Docosahexaenoic acid ingestion inhibits natural killer cell activity and production of inflammatory mediators in young healthy men. Lipids. 1999;34(4):317-24. http://dx.doi.org/10.1007/s11745-999-0369-5. PMid:10443964.

Koh A, Silva APB, Bansal AK, Bansal M, Sun C, Lee H, Glogauer M, Sodek J, Zohar R. Role of osteopontin in neutrophil function. Immunology. 2007;122(4):466-75. http://dx.doi.org/10.1111/j.1365-2567.2007.02682.x. PMid:17680800.

Lackey DE, Olefsky JM. Regulation of metabolism by the innate immune system. Nat Rev Endocrinol. 2016;12(1):15-28. http://dx.doi.org/10.1038/nrendo.2015.189. PMid:26553134.

Lee JY, Zhao L, Youn HS, Weatherill AR, Tapping R, Feng L, Lee WH, Fitzgerald KA, Hwang DH. Saturated fatty acid activates but polyunsaturated fatty acid inhibits toll-like receptor 2 dimerized with toll-like receptor 6 or 1. J Biol Chem. 2004;279(17):16971-9. http://dx.doi.org/10.1074/jbc.M312990200. PMid:14966134.

Mattos R, Guzeloglu A, Badinga L, Staples CR, Thatcher WW. Polyunsaturated fatty acids and bovine interferon-tau modify phorbol ester-induced secretion of prostaglandin F2 alpha and expression of prostaglandin endoperoxide synthase-2 and phospholipase-A2 in bovine endometrial cells. Biol Reprod. 2003;69(3):780-7. http://dx.doi.org/10.1095/biolreprod.102.015057. PMid:12724278.

Mickleborough TD, Tecklenburg SL, Montgomery GS, Lindley MR. Eicosapentaenoic acid is more effective than docosahexaenoic acid in inhibiting proinflammatory mediator production and transcription from LPS-induced human asthmatic alveolar macrophage cells. Clin Nutr. 2009;28(1):71-7. http://dx.doi.org/10.1016/j.clnu.2008.10.012. PMid:19054597.

Moallem U. Invited review : roles of dietary n-3 fatty acids in performance, milk fat composition, and reproductive and immune systems in dairy cattle. J Dairy Sci. 2018;101(10):8641- 61. http://dx.doi.org/10.3168/jds.2018-14772. PMid:30100509.

Moallem U, Lehrer H, Livshits L, Zachut M. The effects of omega-3 α-linolenic acid from flaxseed oil supplemented to high-yielding dairy cows on production, health, and fertility. Livest Sci. 2020;242:104302. http://dx.doi.org/10.1016/j.livsci.2020.104302.

Oh DY, Talukdar S, Bae EJ, Imamura T, Morinaga H, Fan WQ, Li P, Lu WJ, Watkins SM, Olefsky JM. GPR120 is an omega-3 fatty acid receptor mediating potent anti-inflammatory and insulin-sensitizing effects. Cell. 2010;142(5):687-98. http://dx.doi.org/10.1016/j.cell.2010.07.041. PMid:20813258.

Olmo I, Teuber S, Larrazabal C, Alarcon P, Raipane F, Burgos RA, Hidalgo MA. Docosahexaenoic acid and TUG-891 activate free fatty acid-4 receptor in bovine neutrophils. Vet Immunol Immunopathol. 2019;209:53-60. http://dx.doi.org/10.1016/j.vetimm.2019.02.008. PMid:30885306.

Parshyna I, Lehmann S, Grahl K, Pahlke C, Frenzel A, Weidlich H, Morawietz H. Impact of omega-3 fatty acids on expression of angiogenic cytokines and angiogenesis by adipose-derived stem cells. Atheroscler Suppl. 2017;30:303-10. http://dx.doi.org/10.1016/j.atherosclerosissup.2017.05.040. PMid:29096855.

Penrod LV, Allen RE, Turner JL, Limesand SW, Arns MJ. Effects of oxytocin, lipopolysaccharide (LPS), and polyunsaturated fatty acids on prostaglandin secretion and gene expression in equine endometrial explant cultures. Domest Anim Endocrinol. 2013;44(1):46-55. http://dx.doi.org/10.1016/j.domaniend.2012.09.002. PMid:23063410.

Pisani LF, Lecchi C, Invernizzi G, Sartorelli P, Savoini G, Ceciliani F. In vitro modulatory effect of ω-3 polyunsaturated fatty acid (EPA and DHA) on phagocytosis and ROS production of goat neutrophils. Vet Immunol Immunopathol. 2009;131(1- 2):79-85. http://dx.doi.org/10.1016/j.vetimm.2009.03.018. PMid:19395090.

Plewes MR, Burns PD, Hyslop RM, George Barisas B. Influence of omega-3 fatty acids on bovine luteal cell plasma membrane dynamics. Biochim Biophys Acta Biomembr. 2017;1859(12):2413-9. http://dx.doi.org/10.1016/j.bbamem.2017.09.012. PMid:28912100.

Roberts RM, Chen Y, Ezashi T, Walker AM. Interferons and the maternal-conceptus dialog in mammals. Semin Cell Dev Biol. 2008;19(2):170-7. http://dx.doi.org/10.1016/j.semcdb.2007.10.007. PMid:18032074.

Thien FC, Hallsworth MP, Soh H, Lee TH. Effects of exogenous eicosapentaenoic acid on generation of leukotriene C4 and leukotriene C5 by calcium ionophore-activated human eosinophils in vitro. J Immunol. 1993;150(8 Pt 1):3546-52. http://dx.doi.org/10.4049/jimmunol.150.8.3546. PMid:8468488.

Tortosa-Caparrós E, Navas-Carrillo D, Marín F, OrenesPiñero E. Anti-inflammatory effects of omega 3 and omega 6 polyunsaturated fatty acids in cardiovascular disease and metabolic syndrome. Crit Rev Food Sci Nutr. 2017;57(16):3421-9. http://dx.doi.org/10.1080/10408398.2015.1126549. PMid:26745681.

Williams-Bey Y, Boularan C, Vural A, Huang NN, Hwang IY, Shan-Shi C, Kehrl JH. Omega-3 free fatty acids suppress macrophage inflammasome activation by inhibiting NF-κB activation and enhancing autophagy. PLoS One. 2014;9(6): e97957. http://dx.doi.org/10.1371/journal.pone.0097957. PMid:24911523.

Xie D, Liu X, Wang S, You C, Li Y. Effects of dietary LNA/ LA ratios on growth performance, fatty acid composition and expression levels of elovl5, Δ4 fad and Δ6/Δ5 fad in the marine teleost Siganus canaliculatus. Aquaculture. 2017;2018(484):309-16.

Yan Y, Jiang W, Spinetti T, Tardivel A, Castillo R, Bourquin C, Guarda G, Tian Z, Tschopp J, Zhou R. Omega-3 fatty acids prevent inflammation and metabolic disorder through inhibition of NLRP3 inflammasome activation. Immunity. 2013;38(6):1154-63. http://dx.doi.org/10.1016/j.immuni.2013.05.015. PMid:23809162.

Yates CM, Calder PC, Ed Rainger G. Pharmacology and therapeutics of omega-3 polyunsaturated fatty acids in chronic inflammatory disease. Pharmacol Ther. 2014;141(3):272- 82. http://dx.doi.org/10.1016/j.pharmthera.2013.10.010. PMid:24201219.

Downloads

Publicado

2023-08-03

Edição

Seção

ERRATA

Dados de financiamento

Como Citar

1.
Carneiro LC, Saut JPE, Almeida M de O, Barbosa SPF, Williams EJ, Cerqueira HDB de, et al. Errata: Os efeitos in vitro dos ácidos graxos n-3 na regulação da resposta imune de explantes endometriais bovinos ex vivo. Braz. J. Vet. Res. Anim. Sci. [Internet]. 3º de agosto de 2023 [citado 11º de maio de 2024];60:e214210. Disponível em: https://www.revistas.usp.br/bjvras/article/view/214210