Regulação da expressão gênica nas engrenagens do relógio circadiano de mamíferos

Autores

  • Erika Cecon Universidade de São Paulo. Instituto de Biociências. Departamento de Fisiologia
  • Danilo Eugênio de França Laurindo Flôres Universidade de São Paulo. Instituto de Biociências. Departamento de Fisiologia

DOI:

https://doi.org/10.11606/issn.1984-5154.v4p28-33

Palavras-chave:

Ritmo circadiano, regulação gênica, núcleos supraquiasmáticos, genes relógios.

Resumo

A manifestação de ritmos biológicos nos mais diversos organismos é reconhecida desde a antiguidade, mas os princípios básicos responsáveis por sua geração começaram a ser desvendados somente no século passado, e continuam até os dias atuais. Nesse contexto, um grande marco foi a descoberta de uma rede de genes cujos processos de transcrição e tradução são regulados entre si e que constituem a maquinaria básica do sistema oscilatório endógeno. Esta revisão visa descrever o funcionamento desta maquinaria em mamíferos, detalhando seus atuais componentes e como isso se propaga para todo o organismo.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Atkinson, B.G., Helbing, C., Chen, Y. (1996). Reprogramming of genes expressed in amphibian liver during metamorphosis. In: Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds.), Metamorphosis. Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press, San Diego, pp. 539–566.

Barra, G.B., Velasco, F.R., Pessanha, R.P., Campos, A.M., Moura, F.N., Dias, S.M.G., Polikarpov, I., Ribeiro, R.C.J., Simeoni, L.A., Neves, F.A.R. (2004). Mecanismo molecular da ação do hormônio

tireoideano. Arq Bras Endocrinol Metab 48 (1), 25-39.

Benoit, G., Malewicz, M., Perlmann, T.( 2004). Digging deep into the pockets of orphan nuclear receptors: insights from structural studies. Trends Cell Biol. 14, 368–376.

Brown, D.D. and Cai. L. 2007.Amphibian metamorphosis. Developmental Biology 306, 20–33

Callery, E.M. e Elinson, R.P. (2000). Thyroid hormone-dependent metamorphosis in a direct developing frog.PNAS 97(6), 2615-2620.

Duellman, W. E., and Trueb, L. (1994). "Biology of Amphibians." Johns Hopkins University Press, Baltimore, MD. Elicieri, B.P., Brown, D.D.(1994). Quantitation of endogenous

thyroid hormone receptors and during embryogenesis and metamorphosis in Xenopus

laevis. J. Biol. Chem. 269, 24459–24465.

Fairclough, L., Tata, J.R. (1997). An immunocytochemical analysis of expression of thyroid hormone receptor and proteins during natural and thyroid hormone-induced metamorphosis in Xenopus. Dev. Growth Diff. 39, 273–283.

Fondell, J.D., Roy, A.L., Roeder, R.G. (1993). Unliganded thyroid hormone receptor inhibits the formation of a preinitiation complex: implications for active repression. Genes Dev. 7, 1400–1410.

Gilbert, L.I.e Frieden, E. (Eds.), (1981). Metamorphosis: A Problem in Developmental Biology. Plenum Press, New York. Hickman, C.P., Roberts, L.S., Larson, A. (2004). Principios Integrados de Zoologia.Ed. Guanabara Koogan, Rio de Janeiro, 846p.

Huang, H., Brown, D.D., 2000. Prolactin is not a juvenile hormone in Xenopus metamorphosis. Proc. Natl. Acad. Sci. U.S.A. 97, 195–199.

Kawahara, A., Baker, B.S., Tata, J.R. (1991). Developmental and regional expression of thyroid hormone receptor genes during Xenopus metamorphosis. Development 112, 933–943.

Laudet, V. e Gronemeyer, H. (2002). The Nuclear Receptor Facts Book. Academic Press, Orlando Leloup, J. e Buscaglia, M.( 1977). La triiodothyronine: Hormone de la metamorphose des amphibiens.C. R. Hebd. Seanes Acad. Sci. 284, 2261-2263.

Mangelsdorf, D.J., Thummel, C., Beato, M., Herrlich, P., Schutz, G., Umesono, K., Blumberg, B., Kastner, P., Mark, M., Chambon, P., Evans, R.M. (1995). The nuclear receptor superfamily: the second decade. Cell 83, 835–839.

McKenna, N.J. e O'Malley, B.W.(2002). Combinatorial control of gene expression by nuclear receptors and co-regulators. Cell 108, 465-474.

Rabelo, E.M.L., Baker, B.S., Tata, J.R. (1994). Interplay between thyroid hormone and estrogen in modulating expression of their receptor and vitellogenin genes during Xenopus metamorphosis. Mech. Dev. 45, 49–57.

Randall, D.; Burggren, W.; French, K.: Fisiologia animal. Mecanismos e Adaptações. 4a ed. Guanabara Koogan, 2000. 728p.

Rastinejad, F., Perlmann, T., Evans, R.M., Sigler, P.B. (1995). Structural determinants of nuclear receptor assembly on DNA direct repeats. Nature 375, 203–211.

Ribeiro, R.C.J., Kushner, P.J., Baxter, J.D.(1995). The nuclear hormone receptor gene superfamily. Ann Rev Med 46, 443-453.

Robinson-Rechavi, M., Carpentier, A.S., Duffraisse, M., Laudet, V.( 2001). How many nuclear hormone receptors are there in the human genome? Trends Genet 17, 554-556.

Shi, Y..B. e A. Ishizuya-Oka. (1996a). Biphasic intestinal development in amphibians: Embryogenesis and remodeling during metamorphosis. Current topics in developmental biology. 32, 205—235.

Shi, Y-B., Wong, M., Puzianowska-Kuznicka, M., Stolow, M.A. (1996b). Tadpole competence and tissue-specific temporal regulation of amphibian metamorphosis: roles of thyroid hormone and its receptor. BioEssays 18, 391–399.

Tata, J.R. (1966). Requirement for RNA protein synthesis for induced regression of the tadpole tail in organ culture. Dev. Biol. 13, 77–94.

Tata, J.R. (1994). Hormonal regulation of programmed cell death during amphibian metamorphosis. Biochem. Cell Biol. 72, 581–588.

Tata, J.R. (1996). Hormonal interplay and thyroid hormone receptor expression during amphibian metamorphosis. In: Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds.), Metamorphosis. Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press, San Diego, pp. 465–503.

Tata, J.R. (2002). Signalling through nuclear receptors. Nat. Rev. Mol. Cell Biol. 3, 702–710.

Tata, J.R. (2003). Hormonal signalling during amphibian metamorphosis. Proc. Indian Nat. Sci. Acad. B69, 773–790.

Tata, J.R. e Fairclough L.1997. An immunocytochemical analysis of the expression of thyroid hormone receptor alpha and beta proteins during natural and thyroid hormone-induced metamorphosis in Xenopus.Development, growth & differentiation,39(3):273-83.

Tata, J.R.(2006)Amphibian metamorphosis as a model for the developmental actions of thyroid hormone. Molecular and Cellular Endocrinology 246, 10–20.

Tata, J.R., 1998. Hormonal Signaling and Postembryonic Development.Springer, Berlin.

Tata, J.R., 2000. Autoinduction of nuclear hormone receptors during metamorphosis and its significance. Insect Biochem. Mol. Biol. 30, 645–651.

Tata, J.R., Kawahara, A., Baker, B.S. (1991). Prolactin inhibits both thyroid hormone-induced morphogenesis and cell death in cultured amphibian larval tissues. Dev. Biol. 146, 72–80.

Weber, R. (1965). Inhibitory effect of actinomycin on tail atrophy in Xenopus larvae at metamorphosis. Experientia 21, 665–666.

Weber, R. (1969). Tissue involution and lysosomal enzymes during anuran metamorphosis. In: Dingle, J.T., Fell, H.B. (Eds.), Lysosomes in Biology and Pathology, vol. I. North-Holland, Amsterdam, pp. 437– 461.

Wong, J., Shi, Y-B., Wolffe, A.P. (1995). A role for nucleosome assembly in both silencing and activation of the Xenopus TR_A gene by the thyroid hormone receptor. Genes Dev. 9, 2696–2711.

Wu, Y., Xu, B., Koenig R.J. (2001). Thyroid hormone response element sequence and the recruitment of retinoid X receptors for thyroid hormone responsiveness. J Biol Chem 276, 3929-3936.

Yaoita, Y., Brown, D.D. (1990). A correlation of thyroid hormone receptor gene expression with amphibian metamorphosis. Genes Dev. 4, 1917–1924.

Yen, P.M.( 2001). Physiological and molecular basis of thyroid hormone action. Physiol Rev 81,1097-1142.

Yoshizato, K. (1996). Cell death and histolysis in amphibian tail during metamorphosis. In: Gilbert, L.I., Tata, J.R., Atkinson, B.G. (Eds.), Metamorphosis. Postembryonic Reprogramming of Gene Expression in Amphibian and Insect Cells. Academic Press, San Diego, pp. 647– 671.

Downloads

Publicado

2010-04-15

Como Citar

Cecon, E., & Flôres, D. E. de F. L. (2010). Regulação da expressão gênica nas engrenagens do relógio circadiano de mamíferos. Revista Da Biologia, 4(1), 28-33. https://doi.org/10.11606/issn.1984-5154.v4p28-33