Microrganismos marinhos: um reservatório de hidrolases biotecnologicamente interessantes

Autores

  • Isabelle Rodrigues Lopes Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brasil
  • Anna Luiza Bauer Canellas Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brasil
  • Bruno Francesco Rodrigues de Oliveira Universidade Federal Fluminense. Instituto Biomédico. Departamento de Microbiologia e Parasitologia, Niterói, RJ, Brasil
  • Marinella Silva Laport Universidade Federal do Rio de Janeiro. Instituto de Microbiologia Paulo de Góes, Rio de Janeiro, Brasil

DOI:

https://doi.org/10.11606/issn.1984-5154.v22p32-46

Palavras-chave:

ambiente marinho, aplicações biotecnológicas, biocatalisadores, enzimas hidrolíticas, indústria

Resumo

Esta revisão tem por objetivo fornecer uma revisão narrativa atualizada acerca de enzimas hidrolíticas (agarases, amilases, celulases, esterases, lipases, peptidases e quitinases) isoladas do microbioma marinho. Esses biocatalisadores apresentam propriedades bioquímicas únicas, como halotolerância, extremos de pH, temperatura e barofilicidade, que os tornam atraentes para uso em diversos setores industriais, estimulando futuras aplicações biotecnológicas. Considerando o vasto repertório enzimático dos diversos membros das comunidades microbianas vivendo no ambiente marinho, salienta-se a imprescindibilidade de acessar esse habitat, mais especificamente essas unidades biocatalíticas. Com a devida atenção voltada ao viés industrial, novos biocatalisadores serão descobertos com sucesso nas comunidades microbianas marinhas, desde a confirmação de sua atividade até a comprovação de seu emprego prático nos setores de interesse e geração de propriedade intelectual.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Adrio JL, Demain AL. 2014. Microbial enzymes: tools for biotechnological processes. Biomolecules, 4(1): 117-139.

Ali M, Aljadaani S, Khan J, Sindi I, Aboras M, Aly M. 2020. Isolation and Molecular Identification of Two Chitinase Producing Bacteria from Marine Shrimp Shell Wastes. PJBS, 23(2): 139–149.

Ali YB, Verger R, Abousalham A. 2012. Lipases or esterases: does it really matter? Toward a new bio-physico-chemical classification. Methods in Molecular Biology, 861: 31-51.

Allied Market Research. 2019. Research Market Report 2019. Disponível em: https://www.alliedmarketresearch.com/enzymes-market. Acesso em 11/05/2020.

Ambrosino L, Tangherlini M, Colantuono C, Esposito A, Sangiovanni M, Miralto M. 2019. Bioinformatics for Marine Products: An Overview of Resources, Bottlenecks, and Perspectives. Marine Drugs, 17(10): 576.

Annamalai N, Rajeswari M, Balasubramanian T. 2014. Enzymatic saccharification of pretreated rice straw by cellulase produced from Bacillus carboniphilus CAS 3 utilizing lignocellulosic wastes through statistical optimization. Biomass and Bioenergy, 68: 151-160.

Arbige M, Shetty J, Chotani G. 2019. Industrial Enzymology: The Next Chapter. Trends in Biotechnology, 37(12): 1355-1366.

Badgujar S, Mahajan R. 2010. Biological aspects of proteolytic enzymes: A Review. Journal of Pharmacy Research, 3(9): 2048.

Bajaj P, Mahajan R. 2019. Cellulase and xylanase synergism in industrial biotechnology. Applied Microbiology and Biotechnology, 103(21): 8711-8724.

Barrett A, Rawlings N. 2007. ‘Species’ of peptidases. Journal of Biological Chemistry, 388: 1151-1157.

Barzkar N, Homaei A, Hemmati R, Patel S. 2018. Thermostable marine microbial proteases for industrial applications: scopes and risks. Extremophiles, 22(3): 335–346.

Barzkar N, Sohail M. 2020. An overview on marine cellulolytic enzymes and their potential applications. Applied Microbiology and Biotechnology, 104(16): 6873-6892.

Barzkar N, Sohail M, Tamadoni Jahromi S, Gozari M, Poormozaffar S, Nahavandi R, Hafezieh M. 2021. Marine Bacterial Esterases: Emerging Biocatalysts for Industrial Applications. Applied Biochemistry and Biotechnology, 193(4): 1187-1214.

Beygmoradi A, Homaei A, Hemmati R., Santos-Moriano P, Hormigo D, Fernández-Lucas J. (2018). Marine chitinolytic enzymes, a biotechnological treasure hidden in the ocean? Applied Microbiology and Biotechnology, 102(23): 9937-9948.

Brahmachari G, Demain A, Adrio J. 2017. Biotechnology of Microbial Enzymes: Production. (Biocatalysis for Industrial Applications). 1st Edition. EUA: Academic Press, pp. 1-37.

Bornscheuer U. 2002. Microbial carboxyl esterases: classification, properties and application in biocatalysis. Microbiology Reviews, 26(1): 73–81.

Chapman J, Ismail A, Dinu C. 2018. Industrial Applications of Enzymes: Recent Advances, Techniques, and Outlooks. Catalysts, 8(6): 238.

Chi W, Chang Y, Hong S. 2012. Agar Degradation by Microorganisms and Agar-Degrading Enzymes. Applied Microbiology and Biotechnology, 94: 917-30.

Contesini FJ, Melo RR, Sato HH. 2018. An overview of Bacillus proteases: from production to application. Critical Reviews in Biotechnology, 38(3): 321-334.

Cornish-Bowden A. 2011. History of Enzyme Chemistry. eLS. John Wiley & Sons, Ltd. p1-3.

Daniotti S, Re I. 2021. Marine Biotechnology: Challenges and Development Market Trends for the Enhancement of Biotic Resources in Industrial Pharmaceutical and Food Applications. A Statistical Analysis of Scientific Literature and Business Models. Marine Drugs, 19(2): 61.

Di Donato P, Buono A, Poli A, Finore I, Abbamondi G, Nicolaus B, Lama L. 2019. Exploring Marine Environments for the Identification of Extremophiles and Their Enzymes for Sustainable and Green Bioprocesses. Sustainability, 11: 149.

Dos Santos Y, De Veras B, De França A. 2018. A New Salt-Tolerant Thermostable Cellulase from a Marine Bacillus sp. Strain. Journal of Microbiology and Biotechnology, 28(7): 1078‐1085.

Dumorné K., Córdova C, Astorga-Eló M., Renganathan P. 2017. Extremozymes: a potential source for industrial applications. Journal of Microbiology and Biotechnology, 27(4): 649-659.

Fang W, Xue S, Deng P. 2019. AmyZ1: a novel α-amylase from marine bacterium Pontibacillus sp. ZY with high activity toward raw starches. Biotechnology Biofuels, 12: 95.

Faulkner D. 2000. Highlights of marine natural products chemistry (1972-1999). Natural Product Reports, 17: 1-6.

Ferrer M, Méndez-García C, Bargiela R, Chow J, Alonso S, García-Moyano A, Bjerga G, Steen I, Schwabe T, Blom C. 2018. Decoding the Ocean’s Microbiological Secrets for Marine Enzyme Biodiscovery. FEMS Microbiology Letters, 366(1): fny285.

Ghosh D, Saha M, Sana, B, Joydeep M. 2005. Marine Enzymes. Advances in Biochemical Engineering/Biotechnology, 96: 189-218.

Global Markets Insights. 2020. Global Enzymes Market Growth 2018-2024 Industry Share Analysis. Disponível em: https://www.bccresearch.com/marketresearch/biotechnology/global-markets-for-enzymes-in-industrial-applications.html. Acesso em 28/04/2020.

Gopinath SC, Anbu P, Arshad MK, Lakshmipriya T, Voon CH, Hashim U, Chinni SV. 2017. Biotechnological Processes in Microbial Amylase Production. Biomed Research International, 2017: 1272193.

Guisan, MC, Exposito, P. 2020. Food, Agriculture, Production, Population And Poverty In The World, 2000-2017: Priorities For Sustainable Development. Regional and Sectoral Economic Studies, 20(1): 137-150.

Gurung N, Ray S, Bose S, Rai V. 2013. A Broader View: Microbial Enzymes and Their Relevance in Industries, Medicine, and Beyond. BioMed Research International, 1–18.

Gurvan M, Nyval-Collen P, Barbeyron T, Czjzek M, Helbert W. 2006. Bioconversion of red seaweed galactans: A focus on bacterial agarases and carrageenases. Applied Microbiology and Biotechnology, 71: 23–33.

Hafizah N, The A, Furusawa G. 2019. Biochemical characterization of thermostable and detergent-tolerant β-agarase, PdAgaC, from Persicobacter sp. CCB-QB2. Applied Biochemistry and Biotechnology, 187(3): 770–781.

Hamed I, Ozogul F, Regenstein J. 2016. Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): A review. Trends in Food Science and Technology, 48: 40-50.

Hamid R, Khan M, Ahmad M, Ahmad M, Abdin M, Musarrat J, Javed S. 2013. Chitinases: An update. Journal of Pharmacy and Bioallied Sciences, v. 5, p21–29.

Han Z, Zhang Y, Yang J. 2019. Biochemical Characterization of a New β-Agarase from Cellulophaga algicola. International Journal of Molecular Sciences, 20(9): 2143.

Harrison J, Gheeraert N, Tsigelnitskiy D, Cockell C. 2013. The limits for life under multiple extremes. Trends in Microbiology, 21(4): 204–212.

Harshvardhan K, Mishra A, Jha B. 2013. Purification and characterization of cellulase from a marine Bacillus sp. H1666: A potential agent for single step saccharification of seaweed biomass. Journal of Molecular Catalysis B: Enzymatic, 93: 51–56.

Hassan S, Abd El Latif H, Ali S. 2018. Production of Cold-Active Lipase by Free and Immobilized Marine Bacillus cereus HSS: Application in Wastewater Treatment. Frontiers in Microbiology, 9.

Helmreich S. 2003. Trees and Seas of Information: Alien Kinship and the Biopolitics of Gene Transfer in Marine Biology and Biotechnology. American Ethnologist, 30: 340-358.

Hitch T, Clavel T. 2019. A proposed update for the classification and description of bacterial lipolytic enzymes. PeerJ Preprints, 7: e27725v1.

Imhoff J, Labes A, Wiese J. 2011. Bio-mining the microbial treasures of the ocean: New natural products. Biotechnology Advances, 29(5): 468–482.

Isaksen M, Cowieson A, Kragh K. 2010. Starch- and protein-degrading enzymes: Biochemistry, enzymology and characteristics relevant to animal feed use. Enzymes in Farm Animal Nutrition, 2: 85-95.

Jahromi S, Barzkar N. 2018. Future direction in marine bacterial Starch- and protein-degrading enzymes: Biochemistry, enzymology and characteristics relevant to animal feed use agarases for industrial applications. Applied Microbiology and Biotechnology, 102(16): 6847‐6863.

Javed S, Azeem F, Hussain S. 2018. Bacterial lipases: A review on purification and characterization. Progress in Biophysics and Molecular Biology, 132: 23–34.

Jiang C, Liu Z, Cheng D, Mao X. 2020. Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products. Biotechnology Advances, 45: 107641.

Jung, WJ, Kuk, JH, Kim, KY, Kim, TH, Park, RD. 2005. Purification and characterization of chitinase from Paenibacillus illinoisensis KJA-424. Journal of microbiology and biotechnology, 15(2): 274-280.

Juturu V, Wu J. 2014. Microbial cellulases: Engineering, production and applications. Renewable and Sustainable Energy Reviews, 33: 188–203.

Kandra L. 2003. α-Amylases of medical and industrial importance. Journal of Molecular Structure: THEOCHEM, 666: 487–498.

Kelly R, Robinson A, Blumentals I, Brown S, Anfinsen C. 1995. Proteolytic enzymes from hyperthermophilic bacteria and processes for their production, US5391489. Biotechnology Advances, 13(3): 600-600.

Le B, Yang S. 2019. Microbial chitinases: properties, current state and biotechnological applications. World Journal of Microbiology and Biotechnology, 35(9).

Lee WK, Lim YY, Leow AT, Namasivayam P, Ong Abdullah J, Ho CL. 2017. Biosynthesis of agar in red seaweeds: A review. Carbohydrates Polymers, 15: 23-30.

Leema R., Sachindra N. 2018. Purification and Characterization of Agarase from Marine Bacteria Acinetobacter sp. PS12B and Its Use for Preparing Bioactive Hydrolysate from Agarophyte Red Seaweed Gracilaria verrucosa. Applied Biochemistry and Biotechnology, 186(1): 66‐84.

Li J, Xie M, Gao Y. 2019. Identification and biochemical characterization of a novel exo-type β-agarase Aga3463 from an Antarctic Pseudoalteromonas sp. strain. International Journal of Biological Macromolecules, 129: 162–170.

Li J, Han F, Lu X, Fu X, Ma C, Chu Y, Yu W. 2007. A simple method of preparing diverse neoagaro-oligosaccharides with β-agarase. Carbohydrate Research, 342(8): 1030–1033.

Li S, Yang X, Yang S. 2012. Technology prospecting on enzymes: application, marketing and engineering. Computational and Structural Biotechnology Journal, 2: 1–11.

Liu K, Ding H, Yu Y, Chen B. 2019. A Cold-Adapted Chitinase-Producing Bacterium from Antarctica and Its Potential in Biocontrol of Plant Pathogenic Fungi. Marine Drugs, 17(12): 695.

Lopes D, Fraga L, Fleuri L, Macedo G. 2011. Lipase and esterase: to what extent can this classification be applied accurately? Ciência e Tecnologia de Alimentos, 31(3): 603–613.

Lu M, Wang S, Fang Y, Li H, Liu S, Liu H. 2010. Cloning, expression, purification, and characterization of cold-adapted α-amylase from Pseudoalteromonas arctica GS230. The protein journal, 29(8): 591-597.

McDonald A, Boyce S, Tipton K. 2009. ExplorEnz: the primary source of the IUBMB enzyme list. Nucleic Acids Research, 37: D593-D597.

Mehta D, Satyanarayana T. 2016. Bacterial and Archaeal α-Amylases: Diversity and Amelioration of the Desirable Characteristics for Industrial Applications. Frontiers in Microbiology, 28(7): 1129.

Muzzarelli R. 2013. Deacetylation of chitin.In: Chitin. Elsevier. p96.

Navvabi A, Razzaghi M, Fernandes P, Karami L, Homaei A. 2018. Novel lipases discovery specifically from marine organisms for industrial production and practical applications. Process Biochemestry, 70: 61–70.

Panda T e Gowrishankar B. 2005. Production and applications of esterases. Applied Biochemistry and Biotechnology, 67(2): 160-169.

Nigam PS. 2013. Microbial enzymes with special characteristics for biotechnological applications. Biomolecules, 3(3): 597-611.

Parages M, Gutiérrez-Barranquero J, Reen F, Dobson A, O’Gara F. 2016. Integrated (Meta) Genomic and Synthetic Biology Approaches to Develop New Biocatalysts. Marine Drugs, 14(3): 62.

Park S, Lee, C, Hong S. 2020. Implications of agar and agarase in industrial applications of sustainable marine biomass. Applied microbiology and biotechnology, 104(7): 2815-2832.

Patentes de hidrolases 2019-2020. Espacenet Patent search, 2020. Disponível em: https://worldwide.espacenet.com/patent/. Acesso em: 28/06/2023.

Poli A, Finore I, Romano I, Gioiello A, Lama L, Nicolaus B. 2017. Microbial Diversity in Extreme Marine Habitats and Their Biomolecules. Microorganisms, 16(2): 25.

Rahman M, Culsum U, Tang W, Zhang W, Wu G, Liu Z. 2016. Characterization of a novel cold active and salt tolerant esterase from Zunongwangia profunda. Enzyme and Microbial Technology, 85: 1–11.

Ramesh H, Tharanathan R. 2003. Carbohydrates - the renewable raw materials of high biotechnological value. Critical Reviews in Biotechnology, 23: 149e173.

Rawlings N, Barrett A, Thomas P, Huang X., Bateman A, Finn R. 2018. The MEROPS database of proteolytic enzymes, their substrates and inhibitors in 2017 and a comparison with peptidases in the PANTHER database. Nucleic Acids Research, 46: D624-D632.

Robic A, Ullmann C, Auffray P, Persillon C, Martin J. 2017. Enzymes for industrial applications. Oilseeds & Fats Crops and Lipids, 24(4): D404

Robinson P. 2015. Enzymes: principles and biotechnological applications. Essays in Biochemistry, 59: 1–41.

Sahai A, Manocha M. 1993. Chitinases of fungi and plants: Their involvement in morphogenesis and host-parasite interaction. FEMS Microbiology, 11: 317-38.

Sakamoto Y, Suzuki Y, Iizuka I. 2014. S46 Peptidases are the First Exopeptidases to be Members of Clan PA. Scientific Reports, 4: 4977.

Sana, B. 2013. Marine Microbial Enzymes: Biotechnological and Biomedical Aspects. Marine Microbiology, 491–508.

Sanchez S e Demain A. 2017. Useful Microbial Enzymes - An Introduction. Biotechnology of Microbial Enzymes, 1–11.

Saranraj P, Naidu, MA. 2014. Microbial Pectinases: A Review. Global Journal of Traditional Medicinal Systems, 3(1): 1-9.

Sarkar S, Pramanik A, Mitra A, Mukherjee J. 2010. Bioprocessing data for the production of marine enzymes. Marine Drugs, 8: 1323–1372.

Sarmiento F, Peralta R, Blamey J. 2015. Cold and Hot Extremozymes: Industrial Relevance and Current Trends. Frontiers in Bioengineering and Biotechnology, 3.

Sathishkumar R, Ananthan G, Iyappan K, Stalin C. 2015. A statistical approach for optimization of alkaline lipase production by ascidian associated - Halobacillus trueperi RSK CAS9. Biotechnology Reports, 8: 64–71.

Sayali P, Satpute S. 2013. Microbial Esterases: An overview. International Journal of Current Microbiology and Applied Sciences, 2: 135-146.

Schafer T, Borchert T, Nielsen V. 2007. Industrial enzymes. Advances in Biochemical Engineering/Biotechnology, 105: 59-131.

Singh R, Kumar M, Mittal A, Mehta PK. 2016. Microbial enzymes: industrial progress in 21st century. 3 Biotech, 6(2): 174.

Singh RS, Singh T, Pandey A. 2019. Microbial Enzymes - An Overview. Advanced Enzyme Technologies, 1–40.

Smithersgroup. 2015. The Future of Marine Biotechnology for Industrial Applications to 2025; SmithersGroup: Akron, OH, USA.

Song Q, Wang Y, Yin C, Zhang X. 2016. Laa A, a novel high-active alkalophilic alpha-amylase from deep-sea bacterium Luteimonas abyssi XH031T. Enzyme and Microbial Technology, 90: 83–92.

Souza P e Magalhães P. 2010. Application of microbial α-amylase in industry - A review. Brazilian Journal of Microbiology, 41(4): 850–861.

Sundarram A, Murthy T. 2014. α -Amylase Production and Applications: A Review. Journal of Applied & Environmental Microbiology, 2: 166-175.

Suriya J, Bharathiraja S, Krishnan M, Manivasagan P, Kim S. 2016. Marine Microbial Amylases: Properties and Applications. Advances in Food and Nutrition Research, 79: 161‐177.

The Novozymes Report. 2018. Disponível em: https://report2018.novozymes.com/-/media/Report-site-2018/PDF/The_Novozymes_Report_2018.pdf. Acesso em: 20/07/2020.

Thapa S, Li H, OHair J, Bhatti S, Chen FC, Nasr KA, Johnson T, Zhou S. 2019. Biochemical Characteristics of Microbial Enzymes and Their Significance from Industrial Perspectives. Molecular Biotechnology, 61(8): 579-601.

Tipton K. 2019. Translocases (EC 7): A new EC Class. ExplorEnz - The Enzyme Database. Disponível em: https://iubmb.org/wp-content/uploads/sites/10116/2018/10/Translocases-EC-7.pdf. Acesso em: 08/09/2020.

Tiwari R, Pranaw K, Singh S, Nain P, Shukla P, Nain L. 2016. Two-step statistical optimization for cold active β-glucosidase production from Pseudomonas lutea BG8 and its application for improving saccharification of paddy straw. Biotechnology and Applied Biochemistry, 63: 659-668.

Treichel H, Oliveira D, Mazutti M, Luccio M, Oliveira J. 2009. A Review on Microbial Lipases Production. Food and Bioprocess Technology, 3: 182-196.

Trincone A. 2010. Potential biocatalysts originating from sea environments. Journal of Molecular Catalysis B: Enzymatic, 66: 241–256.

Trincone A. 2011. Marine Biocatalysts: Enzymatic Features and Applications. Marine Drugs, 9(4): 478–499.

Trincone A. 2012. Some enzymes in marine environment: prospective applications found in patent literature. Recent Patents on Biotechnology, 6(2): 134–148.

Trincone A. 2013. Marine Enzymes for Biocatalysis, Sources, Biocatalytic Characteristics and Bioprocesses of Marine Enzymes, 1st Edition. Londres: Woodhead Publishing, 576 pp.

Trincone A. 2018. Update on Marine Carbohydrate Hydrolyzing Enzymes: Biotechnological Applications. Molecules (Basel, Switzerland), 23(4): 901.

Trivedi N, Reddy C, Lali A. 2016. Marine Microbes as a Potential Source of Cellulolytic Enzymes. Advances in Food and Nutrition Research, 79: 27‐41.

Usov AI. 2011. Polysaccharides of the red algae. Advances in Carbohydrate Chemistry and Biochemistry, 65: 115-217.

Verma P, Chatterjee S, Keziah M, Devi S. 2018. Fibrinolytic Protease from Marine Streptomyces rubiginosus VITPSS1. Cardiovascular & Hematological Agents in Medicinal Chemistry, 16(1): 44–55.

Wang J, Jiang X, Mou H, Guan H. 2004. Anti‐oxidation of agar oligosaccharides produced by agarase from a marine bacterium. Journal of Applied Phycology, 16: 333–340.

Wang Y, Zhang Y, Sun A, Hu Y. 2016. Characterization of a novel marine microbial esterase and its use to make D-methyl lactate. Chinese Journal of Catalysis, 37(8): 1396–1402.

Watanabe S, Yamaoka N, Fukunaga N. 2002. Purification and characterization of a cold-adapted isocitrate lyase and expression analysis of the cold-inducible isocitrate lyase gene from the psychrophilic bacterium Colwellia psychrerythraea. Extremophiles, 6: 397–405.

Wood T, Garcia-Campayo V. 1990. Enzymology of cellulose degradation. Biodegradation, 1: 147-161.

Wu G, Zhang X, Wei L, Wu G, Kumar A, Mao T, Liu Z. 2015a. A cold-adapted, solvent and salt tolerant esterase from marine bacterium Psychrobacter pacificensis. International Journal of Biological Macromolecules, 81: 180–187.

Wu S, Liu G, Zhang D, Li C, Sun C. 2015b. Purification and biochemical characterization of an alkaline protease from marine bacteria Pseudoalteromonas sp. 129-1. Journal of Basic Microbiology, 55(12): 1427–1434.

Wu S, Lu M, Chen J, Fang Y, Wu L, Xu Y, Wang S. 2016. Production of pullulan from raw potato starch hydrolysates by a new strain of Auerobasidium pullulans. International Journal of Biological Macromolecules, 82: 740–743.

Wu Y, Mao A, Sun C. 2017. Catalytic hydrolysis of starch for biohydrogen production by using a newly identified amylase from a marine bacterium Catenovulum sp. X3. International Journal of Biological Macromolecules, 104(Pt A): 716-723.

Yan Q, Fong SS. 2015. Bacterial chitinase: nature and perspectives for sustainable bioproduction. Bioresources and Bioprocessing, 2(31): 1-9.

Yang S, El-Enshasy H, Thongchul N. 2013. Cellulases: characteristics, sources, production and applications. In: Yang ST, El-Enshasy HA, Thongchul, N. (Eds.), Bioprocessing Technologies in Biorefinery for Sustainable Production of Fuels, Chemicals, and Polymers. John Wiley e Sons, Inc., Hoboken, NJ.

Yun E, Yu S, Kim K. 2017. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Applied Microbiology Biotechnology, 101(14): 5581–5589.

Zehr JP, Weitz JS, Joint I. 2017. How microbes survive in the open ocean. Science, 357(6352): 646-647.

Zhang C, Sun M, Li T. 2011. Structure Analysis of a New Psychrophilic Marine Protease. PLoS ONE, 6(11): e26939.

Zhao X. 2011. Genome-Based Studies of Marine Microorganisms to Maximize the Diversity of Natural Products Discovery for Medical Treatments. Evidence-based Complementary and Alternative Medicine. 2011: 1–11.

Downloads

Publicado

2023-06-29

Edição

Seção

Revisão

Como Citar

Lopes, I. R. ., Canellas, A. L. B. ., Oliveira, B. F. R. de, & Laport, M. S. (2023). Microrganismos marinhos: um reservatório de hidrolases biotecnologicamente interessantes. Revista Da Biologia, 22(1), 32-46. https://doi.org/10.11606/issn.1984-5154.v22p32-46

Dados de financiamento