Perspectivas diagnósticas e terapêuticas da osteoporose após lesão medular

Autores

  • Christina May Moran de Brito Universidade de São Paulo. Faculdade de Medicina
  • Linamara Rizzo Battistella Universidade de São Paulo. Faculdade de Medicina https://orcid.org/0000-0001-5275-0733

DOI:

https://doi.org/10.11606/issn.2317-0190.v11i1a102471

Palavras-chave:

Traumatismos da Medula Espinal, Osteoporose, Densidade Mineral Óssea, Paraplegia, Quadriplegia

Resumo

A osteoporose é uma das reconhecidas complicações da lesão medular, mas restam dúvidas quanto à totalidade de mecanismos fisiopatológicos envolvidos e tratamento efetivo. Grande parte da perda óssea ocorre na fase aguda, com estabilização cerca de doze a dezesseis meses após. A perda óssea afeta todos os segmentos, mas é mais intensa naqueles paralisados e em áreas ricas em osso trabecular. Mecanismos envolvidos não são totalmente esclarecidos, mas englobam não só a perda da tensão mecânica, mas também fatores neurovasculares e alterações estruturais do colágeno. Tanto marcadores bioquímicos quanto estudos com o uso da histomorfometria óssea evidenciam aumento da reabsorção óssea em detrimento da formação óssea. Estudos com o uso da densitometria óssea evidenciam dissociação entre a perda a nível da coluna e quadril, com maior perda a nível do quadril e de membros inferiores, achado considerado típico e marcante deste grupo de pacientes. Como conseqüência, o aumento da incidência de fraturas que se situa entre 1 e 7%, sendo muitas vezes decorrentes de traumas mínimos. Trabalhos com ortostatismo e cinesioterapia não demonstraram benefício significativo no que diz respeito à redução da perda de massa óssea e trabalhos com estimulação elétrica funcional apresentam resultados divergentes, parecendo resultar em algum benefício local. O uso de medicação anti-reabsortiva parece constituir opção promissora, sobretudo na fase aguda, mas estudos são ainda necessários para avaliar a sua efetividade, ou seja, a redução da incidência de fraturas.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Demirel G, Yilmaz H, Paker N, Onel S. Osteoporosis after spinal cord injury. Spinal Cord.1998;36:822-825.

Lee TQ, Shapiro TA, Bell DM. Biomechanical properties of human tibias in long-term spinal cord injury. J Rehabil Res Dev. 1997;34:295-302.

Szollar SM, Martin EME, Parthemore JG, Satoris DJ, Deftos LJ. Demineralization in tetraplegic and paraplegic man over time. Spinal Cord. 1997;35:223-228.

Szollar SM, Martin EME, Parthemore JG, Satoris DJ, Deftos LJ. Densitometric patterns of spinal cord injury associated bone loss. Spinal Cord. 1997;35:374-382.

Uebelhart D, Demiaux DB, Roth M, Chantraine A. Bone metabolism in spinal cord injured individuals and in others who have prolonged immobilisation. A review. Paraplegia. 1995;33:669-673.

Roberts D, Lee W, Cuneo RC, Wittmann J, Ward G, Flatman R, et al. Longitudinal study of bone turnover after acute spinal cord injury. J Clin Endocriol Metab. 1998;83:415-422.

Claus-Walker J, Halstead LS. Metabolic and endocrine changes in spinal cord injury: compounded neurologic dysfunctions. Arch Phys Med Rehabil. 1982;63:632-638.

Leslie WD, Nance PW. Dissociated hip and spine demineralization: a specific finding in spinal cord injury. Arch Phys Med Rehabil. 1993;74:960-964.

Garland DE, Stewart CA, Adkins RH, Hu SS, Rosen C, Liotta FJ, et al. Osteoporosis after spinal cord injury. J Orthop Res. 1992;10:371-378.

Kocina P. Body composition of spinal cord injury adults. Sports Med. 1997;23:48-60.

Griffiths HJ, Bushuef B, Zimmerman RE. Investigation of the loss of bone mineral in patients with spinal cord injury. Paraplegia. 1976;14:207-212.

Wilmet E, Ismail AA, Heilporn A, Welraeds D, Bergmann P. Longitudinal study of the bone mineral content and of soft tissue composition after spinal cord section. Paraplegia. 1995;33:674-677.

Brito CMM, Battistella LR, Sakamoto H, Saito ET. Densidade mineral óssea após lesão medular. Acta Fisiatr. 2002;9:127-133. Doi: https://doi.org/10.11606/issn.2317-0190.v9i3a102372

Rodriguez GP, Claus Walker J, Kent MC, Garza HM. Collagen metabolite excretion as a predictor of bone and skin related complications in spinal cord injury. Arch Phys Med Rehabil. 1989;70:442-444.

Albright F, Burnett CH, Cope O, Parson W. Acute atrophy of bone (osteoporosis) simulating hyperparathyroidism. J Clin Endocrinol. 1941;1:711-716.

Lazo MG, Shirazi P, Sam M, Giobbie-Hurder A, Blacconiere MJ, Muppidi M. Osteoporosis and risk of fracture in men with spinal cord injury. Spinal Cord. 2001;39:208-214.

Freehafer AA, Hazel CM, Becker CL. Lower extremity fractures in patients with spinal cord injury. Paraplegia. 1981;19:367-72.

Barros Filho TE, Greve JM, Oliveira RP, Chiovatto J, Carneiro JF. Fratura de fêmur em pacientes portadores de lesão medular. Rev Hosp Clin Fac Med São Paulo. 1991;46:289-92.

Keating JF, Kerr M, Delargy M. Minimal trauma causing fractures in patients with spinal cord injury. Disabil Rehabil. 1992;14:108-109.

Hartkopp A, Murphy RJ, Mohr T, Kjaer M, Biering-Sorensen F. Bone fracture during electrical stimulation of the quadriceps in a spinal cord injured subject. Arch Phys Med Rehabil. 1998;79:1133-1136.

Ragnarsson KT, Sell GH. Lower extremity fractures after spinal cord injury: a retrospective study. Arch Phys Med Rehabil. 1981;62:418-423.

Szollar SM. Osteoporosis in men with spinal cord injuries. West J Med. 1997;166:270.

Szollar SM, Martin EME, Parthemore JG, Satoris DJ, Deftos LJ. Bone mineral density and indexes of bone metabolism in spinal cord injury. Am J Phys Med Rehabil. 1998;77:28-35.

Frisbie JH. Fractures after myelopathy: the risk quantified. J Spinal Cord Med.1997;20:66-69.

Vestergaard P, Krough K, Rejnmark L, Mosekilde L. Fracture rates and risk factors for fractures in patients with spinal cord injury. Spinal Cord. 1998;36:790-796.

Ingram RR, Suman RK, Freeman PAF. Lower limb fractures in the chronic spinal cord injured patient. Paraplegia. 1989;27:133-139.

Maïmon L, Couret I, Micallef JP, Peruchon E, Mariano-Goulart D, et al. Use of bone biochemical markers with dual-energy x-ray absorptiometry for early determination of bone loss in persons with spinal cord injury. Metabolism. 2002;51:958-963.

Naftchi NE, Viau AT, Sell GH, Lowman EW. Mineral metabolism in spinal cord injury. Arch Phys Med Rehabil. 1980;61:139-142.

Kearns PJ, Thompson JD, Werner PC, Pipp TL, Wilmot CB. Nutritional and metabolic response to acute spinal cord injury. J Parenter Enteral Nutr. 1992;16:11.

Claus-Walker J, Halsted LS, Rodrigues GP, Henry YK. Spinal cord injury hipercalcemia:therapeutic profile. Arch Phys Med Rehabil. 1982;63:108-115.

Maynard FM. Immobilization hypercalcemia following spinal cord injury. Arch Phys Med Rehabil. 1986;67:41-44.

Bergmann P, Heilporn A, Schoutens A, Paternot J, Tricot A. Longitudinal study of calcium and bone metabolism in paraplegic patients. Paraplegia. 1977;78;15:147-159.

Onhry A, Shemesh Y, Zak R, Herzberg M. Zinc and osteoporosis in patients with spinal cord injury. Paraplegia. 1980;18:174-180.

Pietschmann P, Pils P, Woloszczuk W, Maerk R, Lessan D, Stipicic J. Increased serum osteocalcin levels in patients with paraplegia. Paraplegia. 1992;30(3):204-9.

Uebelhart D, Hartmann D, Vuagnat H, Castanier M, Hachen HJ, Chantraine A. Early modifications of biochemical markers of bone metabolism in spinal cord injury patients. A preliminary study. Scand J Rehabil Med. 1994;26:197-202.

Vaziri ND, Pandian MR, Segal JL, Winer RL, Eltorai I, Brunnemann S. Vitamin D, parathormone, and calcitonin profiles in persons with long-standing spinal cord injury. Arch Phys Med Rehabil. 1994;75:766-769.

Stewart AF, Adler M, Byers CM, Segre GV, Broadus AE. Calcium homeostasis in immobilization an example of resorptive hypercalciuria. N Engl J Med. 1982;306:1136-1139

Finsen V, Intredavic B, Fougner KJ. Bone mineral and hormone status in paraplegics. Paraplegia. 1992;30:343-347.

Biering-Sorensen F, Bohr H, Schaadt O. Bone mineral content of the lumbar spine and lower extremities years after spinal cord lesion. Paraplegia.1988;26:293-301.

Liu CC, Theodorou DJ, Theodorou SJ, Andre MP, Sartoris DJ, Szollar SM, et al. Quantitative computed tomography in the evaluation of spinal osteoporosis following spinal cord injury. Osteoporosis Int. 2000;11:889-896.

Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, Wark JD. Quantatitative ultrasound assessment of acute bone loss following spinal cord injury. Osteoporosis Int. 2002,13:586-592.

Kunkel CF, Scremin AM, Eisenberg B, Garcia JF, Roberts S, Martinez S. Effect of standing on spasticity, contracture, and osteoporosis in paralyzed males. Arch Phys Med Rehabil. 1993;74:73-38.

Kaplan PE, Roden W, Gilbert E, Richards L, Goldschmidt JW. Reduction of hypercalciuria in tetraplegia after weight bearing and strengthening exercises. Paraplegia. 1981;19:289-293.

Salzstein RJ, Hardin S, Hastings J. Osteoporosis in spinal cord injury: using an index of mobility and its relationship to bone density. J Am Paraplegia Soc. 1992;15:232-234.

Goemare S, Van Laere M, De Neve P, Kaufman JM. Bone mineral status in paraplegic patients who do or do not perform standing. Osteoporosis Int. 1994;4:138-143.

Bruin ED, Frey Rindova P, Herzog RE, Dietz V, Dambacher MA, Stussis E. Changes of tibia bone properties after spinal cord injury: effects of early intervention. Arch Phys Med Rehabil. 1999;80:214-220

Needham-Shropshire BM, Broton JG, Klose KJ, Lebwohl N, Guest RS, Jacobs PL. Evaluation of a training program for persons with SCI paraplegia using the Parastep 1 ambulation system. Lack of effect on bone mineral density. Arch Phys Med Rehabil. 1997;78:799-803.

Sipski ML, Findley TW, Glaser RM, Schweer S, Ramach C. Prevention of osteoporosis through early use of electrical stimulation after spinal cord injury. Arch Phys Med Rehab. 1990;71:795.

Mysiw J, Jackson R, Bloomfield S. Hypercalciuria prevented by functional electric stimulation. Arch Phys Med Rehab. 1990;71:795.

Leeds EM, Klose KJ, Ganz W, Serafini A, Green BA. Bone mineral density after bicycle ergometry training. Arch Phys Med Rehabil. 1990;71:207-209.

Mohr T, Podenphant J, Biering-Sorensen F, Galbo H, Thamsborg G, Kjaer M. Increased bone mineral density after prolonged electrically induced cicle training of paralyzed limbs in spinal cord injured man. Calcif Tissue Int. 1997;61:22-25.

BeDell KK, Scremin AME, Perell KL, Kunfel CF. Effects of functional electrical stimulationinduced lower extremity cycling on bone density of spinal cord injury patients. Am J Phys Med Rehabil. 1996;75:29-34.

Bélanger M, Stein RB, Wheeler GD, Gordon T, Leduc B. Electrical Stimulation: can it increase muscle strength and reverse osteopenia in spinal cord injured individuals? Arch Phys Med Rehabil. 2000;81:1090-8.

Dawson-Hughes B, Harris SS, Krall EA, Dallal GE. Effect of calcium and vitamin D supplemetation on bone density in men and women 65 years of age or older. N Engl J Med. 1997;337:670-676.

Pols HA, Felsenberg D, Hanley DA, Stepan J, Munoz-Torres M, et al. Effects of alendronate on BMO and fracture risk: the fosit study. Osteoporosis Int. 1999;9:461-468.

Pearson EG, Nance PW, Leslie WD, Ludwig S. Cyclical etidronate: its effect on bone density in patients with acute spinal cord injury. Arch Phys Med Rehabil. 1997;78:269-272.

Minaire P, Berard E, Meunier PJ, Edouard C, Goedert G, Pilonchery G. Effects of disodium dichloromethylene diphosphonate on bone loss in paraplegic patients. J Clin Invest. 1981;68:1086-1092.

Minaire P, Depassio J, Berard E, Meunier PJ, Edouard C, Pilonchery G, et al. Effects of clodronate on immobilization bone loss. Bone. 1987;8:S63-S68.

Chappard D, Minaire P, Privat C, Berard E, Mendoza-Sarmiento J, Tournebise H, et al. Effects of tiludronate on bone loss in paraplegic patients. J Bone Miner Res. 1995;10:112-118.

Sniger W, Garshick E. Alendronate increases bone density in chronic spinal cord injury: a case report. Arch Phys Med Rehabil. 2002;83:139-140.

Zehnder Y, Risi S, Michel D, Knecht H, Perrelet R, Kraenzlin M, et al. Prevention of bone loss in paraplegics over 2 years with alendronate. J Bone Miner Res. 2004;19:1067-1074.

Naftchi NE, Viau AT, Sell GH, Lowman EW. Spinal cord injury: effect of thyrocalcin on calcium, magnesium and phosphorus in paraplegic rats. Arch Phys Med Rehabil. 1980;61:575-579.

Notelovitz M. Estrogen therapy and osteoporosis: principles and practice. Am J Med Sci. 1997;313:2-12.

Reginster J. Miscellaneous and experimental agents for osteoporosis. Am J Med Sci. 1997;313:33-40.

Garland DE, Adkins RH, Matsuno NN, Stewart CA. The effect of pulsed eletromagnetic fields on osteoporosis at the knee of individuals with spinal cord injury. J Spinal Cord Med. 1999;22:239-245.

Warden SJ, Bennell KL, Matthews B, Brown DJ, McMeeken JM, et al. Efficacy of lowintensity pulsed ultrasound in the prevention of osteoporosis following spinal cord injury. Bone. 2001,29:431-436.

Yabur JA, Mautalen C, Rapado A. Aspectos diagnósticos y terapéuticos de la osteoporosis. Caracas. Junio, 1998. Comité de expertos de la SIBOMM. 1998;7:214-226.

Downloads

Publicado

2004-04-09

Edição

Seção

Artigo de Revisão

Como Citar

1.
Brito CMM de, Battistella LR. Perspectivas diagnósticas e terapêuticas da osteoporose após lesão medular. Acta Fisiátr. [Internet]. 9º de abril de 2004 [citado 3º de maio de 2024];11(1):28-33. Disponível em: https://www.revistas.usp.br/actafisiatrica/article/view/102471