Efeitos de um treinamento com dispositivo comercial de realidade virtual imersiva sobre a marcha e cognição de pessoas com doença de Parkinson

Autores

DOI:

https://doi.org/10.11606/issn.2317-0190.v30i1a201169

Palavras-chave:

Doença de Parkinson, Cognição, Marcha, Realidade Virtual, Reabilitação

Resumo

Objetivo: Avaliar a eficácia e a usabilidade de um treinamento imersivo de realidade virtual usando o Samsung Gear VR OculusTM (SGVR) para marcha e cognitivo em pessoas com doença de Parkinson (DP). Foi realizado um ensaio clínico controlado, quase experimental e cego. Método: Quarenta pessoas com DP foram divididas em dois grupos. O Samsung Gear Virtual Reality Group (VRG) participou de 10 sessões, duas vezes por semana, com duração de uma hora cada, realizando quatro jogos que exigiam movimento da cabeça e deslocamento do centro de gravidade. O grupo controle não recebeu tratamento. Os participantes foram avaliados antes, após a intervenção e 30 dias após a intervenção, com avaliação da marcha por meio do teste Timed Up and Go, teste de caminhada de 10 metros, teste de caminhada de 30 segundos com tarefa simples e dupla e avaliação cognitiva com teste de fluência verbal, dígito para frente e para trás Testes de amplitude e teste Stroop Color. Ao final do treinamento, a VRG respondeu ao questionário System Usabilidade Scale para avaliar a usabilidade do sistema. Resultados: Embora o sistema tenha sido avaliado com excelente usabilidade pelos usuários, não houve efeitos de interação e, portanto, nossos resultados não suportam que o treinamento de realidade virtual imersiva usando jogos SGVR foi superior a nenhum treinamento. Conclusão: No entanto, quando cada grupo foi examinado separadamente, o VRG apresentou melhoras, após a intervenção e 30 dias após a intervenção, para velocidade da marcha (p<0,005 e p<0,001, respectivamente), memória de trabalho, atenção e processamento de informações (p<0,01 em ambos os momentos de avaliação), inibição de resposta, memória de trabalho e de longo prazo (p< 0,01 em 30 dias após a intervenção). A avaliação adicional do dispositivo SGVR é necessária.

Downloads

Os dados de download ainda não estão disponíveis.

Referências

Calabresi P, Picconi B, Tozzi A, Di Filippo M. Dopamine-mediated regulation of corticostriatal synaptic plasticity. Trends Neurosci. 2007;30(5):211-9. Doi: https://doi.org/10.1016/j.tins.2007.03.001

Muslimovic D, Post B, Speelman JD, Schmand B. Cognitive profile of patients with newly diagnosed Parkinson disease. Neurology. 2005;65(8):1239-45. Doi: https://doi.org/10.1212/01.wnl.0000180516.69442.95

Combes R. No time like the present - two hundred years of Parkinson's disease. Altern Lab Anim. 2017;45(2):57-59. Doi: https://doi.org/10.1177/026119291704500206

Evans T, Jefferson A, Byrnes M, Walters S, Ghosh S, Mastaglia FL, et al. Extended "Timed Up and Go" assessment as a clinical indicator of cognitive state in Parkinson's disease. J Neurol Sci. 2017;375:86-91. Doi: https://doi.org/10.1016/j.jns.2017.01.050

Killane I, Fearon C, Newman L, McDonnell C, Waechter SM, Sons K, et al. Dual Motor-Cognitive Virtual Reality Training Impacts Dual-Task Performance in Freezing of Gait. IEEE J Biomed Health Inform. 2015;19(6):1855-61. Doi: https://doi.org/10.1109/JBHI.2015.2479625

Matar E, Shine JM, Naismith SL, Lewis SJ. Using virtual reality to explore the role of conflict resolution and environmental salience in freezing of gait in Parkinson's disease. Parkinsonism Relat Disord. 2013;19(11):937-42. Doi: https://doi.org/10.1016/j.parkreldis.2013.06.002

Panegyres PK. The contribution of the study of neurodegenerative disorders to the understanding of human memory. QJM. 2004;97(9):555-67. Doi: https://doi.org/10.1093/qjmed/hch096

Palmeri R, Lo Buono V, Corallo F, Foti M, Di Lorenzo G, Bramanti P, Marino S. Nonmotor Symptoms in Parkinson Disease: A Descriptive Review on Social Cognition Ability. J Geriatr Psychiatry Neurol. 2017;30(2):109-121. Doi: https://doi.org/10.1177/0891988716687872

Campos-Sousa IS, Campos-Sousa RN, Ataíde L Jr, Soares MM, Almeida KJ. Executive dysfunction and motor symptoms in Parkinson's disease. Arq Neuropsiquiatr. 2010;68(2):246-51. Doi: https://doi.org/10.1590/s0004-282x2010000200018

Allen NE, Sherrington C, Suriyarachchi GD, Paul SS, Song J, Canning CG. Exercise and motor training in people with Parkinson's disease: a systematic review of participant characteristics, intervention delivery, retention rates, adherence, and adverse events in clinical trials. Parkinsons Dis. 2012;2012:854328. Doi: https://doi.org/10.1155/2012/854328

Murray DK, Sacheli MA, Eng JJ, Stoessl AJ. The effects of exercise on cognition in Parkinson's disease: a systematic review. Transl Neurodegener. 2014;3(1):5. Doi: https://doi.org/10.1186/2047-9158-3-5

Beaulieu-Boire L, Belzile-Lachapelle S, Blanchette A, Desmarais PO, Lamontagne-Montminy L, Tremblay C, et al. Balance rehabilitation using Xbox Kinect® among an elderly population: a pilot study. J Nov Physiother. 2015; 5:261. Doi: https://doi.org/10.4172/2165-7025.1000261

Esculier JF, Vaudrin J, Tremblay LE. Corticomotor excitability in Parkinson's disease during observation, imagery and imitation of action: effects of rehabilitation using wii fit and comparison to healthy controls. J Parkinsons Dis. 2014;4(1):67-75. Doi: https://doi.org/10.3233/JPD-130212

Liao YY, Yang YR, Cheng SJ, Wu YR, Fuh JL, Wang RY. Virtual Reality-Based Training to Improve Obstacle-Crossing Performance and Dynamic Balance in Patients With Parkinson's Disease. Neurorehabil Neural Repair. 2015;29(7):658-67. Doi: https://doi.org/10.1177/1545968314562111

Zalecki T, Gorecka-Mazur A, Pietraszko W, Surowka AD, Novak P, Moskala M, et al. Visual feedback training using WII Fit improves balance in Parkinson's disease. Folia Med Cracov. 2013;53(1):65-78.

Alves MLM, Mesquita BS, Morais WS, Leal JC, Satler CE, Santos Mendes FA. Nintendo Wii™ versus Xbox Kinect™ for assisting people with Parkinson's disease. Percept Mot Skills. 2018;125(3):546-565. Doi: https://doi.org/10.1177/0031512518769204

Gonçalves GB, Leite MA, Orsini M, Pereira JS. Effects of using the nintendo wii fit plus platform in the sensorimotor training of gait disorders in Parkinson's disease. Neurol Int. 2014;6(1):5048. Doi: https://doi.org/10.4081/ni.2014.5048

Gonçalves GB, Leite MAA, Pereira JS. Influência das distintas modalidades de reabilitação sobre as disfunções motoras decorrentes da doença de Parkinson. Rev Bras Neurol. 2011;47(2):22–30.

Mhatre PV, Vilares I, Stibb SM, Albert MV, Pickering L, Marciniak CM, et al. Wii Fit balance board playing improves balance and gait in Parkinson disease. PM R. 2013;5(9):769-77. Doi: https://doi.org/10.1016/j.pmrj.2013.05.019

Mendes FAS, Pompeu JE, Modenesi Lobo A, Guedes da Silva K, Oliveira TP, Peterson Zomignani A, et al. Motor learning, retention and transfer after virtual-reality-based training in Parkinson's disease--effect of motor and cognitive demands of games: a longitudinal, controlled clinical study. Physiotherapy. 2012;98(3):217-23. Doi: https://doi.org/10.1016/j.physio.2012.06.001

Zimmermann R, Gschwandtner U, Benz N, Hatz F, Schindler C, Taub E, Fuhr P. Cognitive training in Parkinson disease: cognition-specific vs nonspecific computer training. Neuro- logy. 2014;82(14):1219-26. Doi: https://doi.org/10.1212/WNL.0000000000000287

Herz NB, Mehta SH, Sethi KD, Jackson P, Hall P, Morgan JC. Nintendo Wii rehabilitation ("Wii-hab") provides benefits in Parkinson's disease. Parkinsonism Relat Disord. 2013;19(11):1039-42. Doi: https://doi.org/10.1016/j.parkreldis.2013.07.014

Pompeu JE, Mendes FA, Silva KG, Lobo AM, Oliveira TP, Zomignani AP, et al. Effect of Nintendo Wii™-based motor and cognitive training on activities of daily living in patients with Parkinson's disease: a randomised clinical trial. Physiotherapy. 2012;98(3):196-204. Doi: https://doi.org/10.1016/j.physio.2012.06.004

Melo Cerqueira TM, Moura JA, Lira JO, Leal JC, D'Amelio M, Santos Mendes FA. Cognitive and motor effects of Kinect-based games training in people with and without Parkinson disease: A preliminary study. Physiother Res Int. 2020;25(1):e1807. Doi: https://doi.org/10.1002/pri.1807

Gualberto AJO, Almeida GSN, Pereira MB, Ferreira RM, Ribeiro Filho RM, Moura LR. Os benefícios do videogame terapia no tratamento de Parkinson. RESU – Rev Educ Saúde. 2019:7(Supl 1):204-8.

Mendes FAS, Arduini L, Botelho A, Cruz MB, Santos-Couto-Paz CC, Pompeu SMAA, et al. Pacientes com a Doença de Parkinson são capazes de melhorar seu desempenho em tarefas virtuais do Xbox Kinect®: uma série de casos. Motricidade. 2015;11(3):68-80. Doi: https://doi.org/10.6063/motricidade.3805

Pompeu JE, Arduini LA, Botelho AR, Fonseca MB, Pompeu SM, Torriani-Pasin C, et al. Feasibility, safety and outcomes of playing Kinect Adventures!™ for people with Parkinson's disease: a pilot study. Physiotherapy. 2014;100(2):162-8. Doi: https://doi.org/10.1016/j.physio.2013.10.003

Severiano MIR, Zeigelboim BS, Teive HAG, Santos GJB, Fonseca VR. Effect of virtual reality in Parkinson's disease: a prospective observational study. Arq Neuropsiquiatr. 2018;76(2):78-84. Doi: https://doi.org/10.1590/0004-282X20170195

Kim A, Darakjian N, Finley JM. Walking in fully immersive virtual environments: an evaluation of potential adverse effects in older adults and individuals with Parkinson's disease. J Neuroeng Rehabil. 2017;14(1):16. Doi: https://doi.org/10.1186/s12984-017-0225-2

Vieira GP, Araujo DFGH, Leite MAA, Orsini M, Correa CL. Realidade virtual na reabilitação física de pacientes com doença de Parkinson. Rev Bras Crescimento Desenvolv Mum. 2014;24(1):31-41.

Weiss PL, Kizony R, Feintuch U, Katz N. Virtual Reality in Neurorehabilitation. In: Selzer M, Clarke S, Cohen L, Duncan P, Gage F. Textbook of Neural Repair and Rehabilitation. Cambridge: Cambridge University; 2006. p. 182-197. Doi: https://doi.org/10.1017/CBO9780511545078.015

Mosadeghi S, Reid MW, Martinez B, Rosen BT, Spiegel BM. Feasibility of an Immersive Virtual Reality Intervention for Hospitalized Patients: An Observational Cohort Study. JMIR Ment Health. 2016;3(2):e28. Doi: https://doi.org/10.2196/mental.5801

Cikajlo I, Peterlin Potisk K. Advantages of using 3D virtual reality based training in persons with Parkinson's disease: a parallel study. J Neuroeng Rehabil. 2019;16(1):119. Doi: https://doi.org/10.1186/s12984-019-0601-1

Tashjian VC, Mosadeghi S, Howard AR, Lopez M, Dupuy T, Reid M, et al. Virtual Reality for Management of Pain in Hospitalized Patients: Results of a Controlled Trial. JMIR Ment Health. 2017;4(1):e9. Doi: https://doi.org/10.2196/mental.7387

Hughes AJ, Daniel SE, Kilford L, Lees AJ. Accuracy of clinical diagnosis of idiopathic Parkinson's disease: a clinico-pathological study of 100 cases. J Neurol Neurosurg Psychiatry. 1992;55(3):181-4. Doi: https://doi.org/10.1136/jnnp.55.3.181

Morris S, Morris ME, Iansek R. Reliability of measurements obtained with the Timed "Up & Go" test in people with Parkinson disease. Phys Ther. 2001;81(2):810-8. Doi: https://doi.org/10.1093/ptj/81.2.810

Almeida LR, Valenca GT, Negreiros NN, Pinto EB, Oliveira-Filho J. Comparison of Self-report and Performance-Based Balance Measures for Predicting Recurrent Falls in People With Parkinson Disease: Cohort Study. Phys Ther. 2016;96(7):1074-84. Doi: https://doi.org/10.2522/ptj.20150168

Fernandes Â, Mendes A, Rocha N, Tavares JM. Cognitive predictors of balance in Parkinson's disease. Somatosens Mot Res. 2016;33(2):67-71. Doi: https://doi.org/10.1080/08990220.2016.1178634

Paker N, Bugdayci D, Goksenoglu G, Demircioğlu DT, Kesiktas N, Ince N. Gait speed and related factors in Parkinson's disease. J Phys Ther Sci. 2015;27(12):3675-9. Doi: https://doi.org/10.1589/jpts.27.3675

Lang JT, Kassan TO, Devaney LL, Colon-Semenza C, Joseph MF. Test-Retest Reliability and Minimal Detectable Change for the 10-Meter Walk Test in Older Adults With Parkinson's disease. J Geriatr Phys Ther. 2016;39(4):165-70. Doi: https://doi.org/10.1519/JPT.0000000000000068

Salbach NM, Mayo NE, Higgins J, Ahmed S, Finch LE, Richards CL. Responsiveness and predictability of gait speed and other disability measures in acute stroke. Arch Phys Med Rehabil. 2001;82(9):1204-12. Doi: https://doi.org/10.1053/apmr.2001.24907

Knutson LM, Schimmel PA, Ruff A. Standard Task Measurement for Mobility: Thirty-Second Walk Test. Pediatr Phys Ther. 1999;11(4):183-90.

Koerts J, Meijer HA, Colman KS, Tucha L, Lange KW, Tucha O. What is measured with verbal fluency tests in Parkinson's disease patients at different stages of the disease? J Neural Transm (Vienna). 2013;120(3):403-11. Doi: https://doi.org/10.1007/s00702-012-0885-9

Figueiredo VLM, Nascimento E. Desempenhos nas duas tarefas do subteste dígitos do WISC-III e do WAIS-III. Psic Teor e Pesq. 2007;23(3):313-18. Doi: https://doi.org/10.1590/S0102-37722007000300010

Mator JD, Lehman WE, McManus W, Powers S, Tiller L, Unverricht JR, et al. Usability: adoption, measurement, value. Hum Factors. 2021;63(6):956-973. Doi: https://doi.org/10.1177/0018720819895098

Bangor A, Kortum P, Miller J. Determining what individual SUS scores mean: adding an adjective rating scale. J Usability Stud. 2009;4(3):114-23.

Brooke J. SUS - A quick and dirty usability scale. In: Jordan PW, Thomas B, McClelland IL, Weerdmeester B. Usability evaluation in industry. London: CRC; 1996. p. 189-94.

Melo Cerqueira TM, Moura JA, Lira JO, Leal JC, D'Amelio M, Santos Mendes FA. Cognitive and motor effects of Kinect-based games training in people with and without Parkinson disease: A preliminary study. Physiother Res Int. 2020;25(1):e1807. Doi: https://doi.org/10.1002/pri.1807

Lee MM, Shin DC, Song CH. Canoe game-based virtual reality training to improve trunk postural stability, balance, and upper limb motor function in subacute stroke patients: a randomized controlled pilot study. J Phys Ther Sci. 2016;28(7):2019-24. Doi: https://doi.org/10.1589/jpts.28.2019

Lloréns R, Noé E, Colomer C, Alcañiz M. Effectiveness, usability, and cost-benefit of a virtual reality-based telerehabilitation program for balance recovery after stroke: a randomized controlled trial. Arch Phys Med Rehabil. 2015;96(3):418-425.e2. Doi: https://doi.org/10.1016/j.apmr.2014.10.019

Meldrum D, Glennon A, Herdman S, Murray D, McConn-Walsh R. Virtual reality rehabilitation of balance: assessment of the usability of the Nintendo Wii(®) Fit Plus. Disabil Rehabil Assist Technol. 2012;7(3):205-10. Doi: https://doi.org/10.3109/17483107.2011.616922

Oh H, Lee G. Feasibility of full immersive virtual reality video game on balance and cybersickness of healthy adolescents. Neurosci Lett. 2021;760:136063. Doi: https://doi.org/10.1016/j.neulet.2021.136063

Downloads

Publicado

2023-03-31

Edição

Seção

Artigo Original

Como Citar

1.
Rocha PS, Silva AK dos S da, Piemonte MEP, Mendes FA dos S. Efeitos de um treinamento com dispositivo comercial de realidade virtual imersiva sobre a marcha e cognição de pessoas com doença de Parkinson. Acta Fisiátr. [Internet]. 31º de março de 2023 [citado 25º de abril de 2024];30(1):13-20. Disponível em: https://www.revistas.usp.br/actafisiatrica/article/view/201169